Wilhelm Roux's archives of developmental biology

, Volume 186, Issue 3, pp 211–233 | Cite as

Pattern stability in the insect segment

II. The intersegmental region
  • Katharina Nübler-Jung


  1. 1.

    InDysdercus the abdominal segments are isolated from each other by an intersegmental region which can be distinguished on the basis of morphological and physiological criteria.

  2. 2.

    The intersegmental region (ISR) consists of the visible segment border and narrow strips of cells anterior and posterior to it.

  3. 3.

    The anterior strip (w-ISR) is white and merges with the white segment region (wS) in front of it, and the posterior strip (r-ISR) is red and merges posteriorly with the red segment region (rS). The wS and the rS meet in the middle of the segment; together they form the segment proper.

  4. 4.

    Grafts from the ISR have been transplanted to various positions within a segment. The reactions of graft and host, respectively, can be distinguished in combinations involving a colour mutant and/or individuals of different sexes.

  5. 5.

    The results show that cells of the r-ISR and the w-ISR each have some adhesiveness towards those tissues which they border in situ, and less adhesiveness towards other tissues. That is, the w-ISR is adhesive towards the r-ISR and wS and is usually rejected by tissue of the rS, whereas the r-ISR is adhesive towards tissue of the w-ISR and rS, but is rejected by tissue of the wS.

  6. 6.

    The role which the ISR plays as a barrier between adjacent segments can essentially be interpreted on the basis of differences in cell adhesiveness.

  7. 7.

    Besides these adhesiveness properties the two parts of the ISR show a long-range influence on polarity and pigment synthesis in surrounding segment tissue.

  8. 8.

    The adhesiveness properties of the r-ISR and w-ISR can explain why the segment boundary forms such a straight line and why the ISR tends to grow between tissues from non-contiguous segment levels. This property can explain the hitherto not understood healing capacity of the ISR which even after wounding prevents cellular interactions between adjacent segments so effectively.


Key words

Pattern reconstitution Transplantation of mutant epidermis Segmental gradients Intersegmental region Cell polarity Cell adhesion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bohn, H.: Interkalare Regeneration und segmentale Gradienten bei Extremitäten vonLeucophaea-Larven (Blattaria). I. Femur und Tibia. Wilhelm Roux' Archiv165, 303–341 (1970a)Google Scholar
  2. Bohn, H.: Interkalare Regeneration und segmentale Gradienten bei Extremitäten vonLeucophaea-Larven (Blattaria). II. Coxa und Tarsus. Dev. Biol.23, 355–379 (1970b)PubMedGoogle Scholar
  3. Caveney, S.: Intercellular communication in a positional field: Movement of small ions between insect epidermal cells. Dev. Biol.40, 311–322 (1974)PubMedGoogle Scholar
  4. Crick, F.H.C.: Diffusion in embryogenesis. Nature225, 420–422 (1970)PubMedGoogle Scholar
  5. Hollweg, G.: Eine neue Farbmuster-Mutante “white” der roten BaumwollwanzeDysdercus intermedius Dist. (Heteroptera, Pyrrhocoridae). Biol. Zbl.91, 545–556 (1972)Google Scholar
  6. Lawrence, P.A.: Gradients in the insect segment: The orientation of hairs and bristles in the mildweed bugOncopeltus fasciatus. J. Exp. Biol.44, 607–620 (1966)Google Scholar
  7. Lawrence, P.A.: The development of spatial patterns in the integument of insects. In: Developmental systems — insects. (S.J. Counce and C.H. Waddington, eds.), Vol. 2, pp. 157–209. London, New York: Academic Press 1973aGoogle Scholar
  8. Lawrence, P.A.: A clonal analysis of segment development inOncopeltus (Hemiptera). J. Embryol. Exp. Morphol.30, 681–699 (1973b)PubMedGoogle Scholar
  9. Lawrence, P.A.: Maintenance of boundaries between developing organs in insects. Nature New Biol.242, 31–32 (1973c)PubMedGoogle Scholar
  10. Lawrence, P.A.: The structure and properties of a compartment border: the intersegmental boundary inOncopeltus. In: Cell patterning. Ciba Foundation Symposium29, pp. 3–23 (1975)Google Scholar
  11. Lawrence, P.A., Crick, F.H.C., Munro, M.: A gradient of positional information in an insect,Rhodnius. J. Cell Sci.11, 815–853 (1972)PubMedGoogle Scholar
  12. Lawrence, P.A., Green, S.M.: The anatomy of a compartment border. The intersegmental boundary inOncopeltus. J. Cell Biol.65, 373–382 (1975)PubMedGoogle Scholar
  13. Lawrence, P.A., Staddon, B.W.: Pecularities of the epidermal gland system of the cotton stainerDysdercus fasciatus Signoret (Heteroptera: Pyrrhocoridae). J. Entomol. (A)49, 121–130 (1975)Google Scholar
  14. Locke, M.: The cuticular pattern in an insect,Rhodnius prolixus STÅL. J. Exp. Biol.36, 459–477 (1959)Google Scholar
  15. Locke, M.: The cuticular pattern in an insect — the intersegmental membranes. J. Exp. Biol.37, 398–407 (1960)Google Scholar
  16. Locke, M.: The development of patterns in the integument of insects. Adv. Morphogenesis6, 33–87 (1967)Google Scholar
  17. Marcus, W.: Untersuchungen über die Polarität der Rumpfhaut von Schmetterlingen. Wilhelm Roux Archiv154, 56–102 (1962)Google Scholar
  18. Nübler-Jung, K.: Cell migration during pattern reconstitution in the insect segment (Dysdercus intermedius Dist., Heteroptera). Nature248, 610–611 (1974)PubMedGoogle Scholar
  19. Nübler-Jung, K.: Mechanismen der Musterstabilisierung im Abdominalsegment hemimetaboler Insekten (Dysdercus intermedius Dist., Heteroptera). Freiburg: Thesis, Biol. Fakultät 1976Google Scholar
  20. Nübler-Jung, K.: Pattern stability in the insect segment. I. Pattern reconstitution by intercalary regeneration and cell sorting inDysdercus intermedius Dist. Wilhelm Roux's Archives183, 17–40 (1977)Google Scholar
  21. Piepho, H.: Über die Ausrichtung der Schuppenbälge und Schuppen am Schmetterlingsrumpf. Naturwissenschaften42, 22 (1955a)Google Scholar
  22. Piepho, H.: Über die polare Orientierung der Bälge und Schuppen auf dem Schmetterlingsrumpf. Biol. Zbl.74, 467–474 (1955b)Google Scholar
  23. Piepho, H.: Ausrichtung der Schuppen und Schuppenbälge am Schmetterlingsrumpf durch einen Stoff. Biol. Zbl.89, 573–576 (1970)Google Scholar
  24. Piepho, H.: Induktion des Segmenthinterrandes bei der Wachsmotte. Naturwissenschaften58, 59 (1971)PubMedGoogle Scholar
  25. Piepho, H., Hintze-Podufal, C.: Zur Polarität des Insektensegmentes. I. Induktion des Segmenthinterrandes beiGalleria mellonella. L. Biol. Zbl.90, 419–431 (1971)Google Scholar
  26. Piepho, H., Marcus, W.: Wirkungen richtender Faktoren bei der Bildung der Schuppen und Bälge des Schmetterlingsrumpfes. Biol. Zbl.76, 23–27 (1957)Google Scholar
  27. Piepho, H., Streichhahn, J., Vornkahl, G.: Zur Polarität des Insektensegmentes. II. Artunspezifität des segmentalen Gradienten der Wachsmotten. Biol. Zbl.92, 137–149 (1973)Google Scholar
  28. Steinberg, M.S.: The problem of adhesive selectivity in cellular interactions. In: Cellular membranes in development (M. Locke, ed.) pp. 321–366. New York: Academic Press 1964Google Scholar
  29. Steinberg, M.S.: Does differential adhesion govern self-assembly processes in histogenesis? Equilibrium configurations and the emergence of a hierarchy among populations of embryonic cells. J. Exp. Zool.173, 395–434 (1970)PubMedGoogle Scholar
  30. Stumpf, H.F.: Differenzierung durch die Niveauwerte eines Konzentrationsgefälles. Verh. Zool. Ges.30, Suppl. 447–490 (1966a)Google Scholar
  31. Stumpf, H.F.: Über gefällabhängige Bildungen des Insektensegmentes. J. Insect. Physiol.12, 601–617 (1966b)Google Scholar
  32. Stumpf, H.F.: Über den Verlauf eines schuppenorientierenden Gefälles beiGalleria mellonella. Wilhelm Roux Archiv158, 315–320 (1967)Google Scholar
  33. Warner, A.E., Lawrence, P.A.: Electrical coupling across developmental boundaries in insect epidermis. Nature245, 47–48 (1973)PubMedGoogle Scholar
  34. Wigglesworth, V.B.: The origin of sensory neurones in an insect,Rhodnius prolixus (Hemiptera). Q. J. Microsc. Sci.95, 93–112 (1953)Google Scholar
  35. Wigglesworth, V.B.: Structural changes in the epidermal cells ofRhodnius during tracheole capture. J. Cell Sci.26, 161–174 (1977)PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Katharina Nübler-Jung
    • 1
  1. 1.Biologisches Institut I (Zoologie) der Albert-Ludwigs-UniversitätFreiburg i.Br.Germany

Personalised recommendations