Wilhelm Roux's archives of developmental biology

, Volume 185, Issue 4, pp 347–362 | Cite as

Sulfate and glucosamine labelling of the intercellular matrix in vitellogenic follicels of a moth

  • William H. Telfer
Article

Summary

InHyalophora cecropia the intercellular spaces of the follicles contain during vitellogenesis a matrix that can be labelled eitherin situ or in culture with35S-sulfate and3H-glucosamine. The matrix was demonstrated by autoradiography and also by treating follicles for 15 min with pronase, which released TCA-soluble matrix fragments with molecular weights of up to 2×106 daltons. Testicular hyaluronidase degraded the high molecular weight fragments, and thus it is probable that they are chondroitin sulfate-like mucopolysaccharides. With the termination of vitellogenesis new matrix is no longer deposited, and the pre-existing material is disassembled. The sulfated matrix may account for the patency of the intercellular diffusion channels essential for blood protein uptake and also for the low level, extracellular binding of blood proteins that characterizes the vitellogenic follicle inHyalophora.

Key words

Ovary Silkworm Sulfate Glucosamine Mucopolysaccharide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abu-Hakima, R., Davey, K.G.: The action of juvenile hormone on the follicle cells ofRhodnius prolixus: The importance of volume change. J. Exp. Biol.69, 33–44 (1977)Google Scholar
  2. Anderson, E.: Oocyte differentiation and vitellogenesis in the roach,Periplaneta americana. J. Cell Biol.20, 131–155 (1964)Google Scholar
  3. Anderson, L.M.: Protein synthesis and uptake by isolated Cecropia oocytes. J. Cell Sci.8, 735–750 (1971)Google Scholar
  4. Anderson, L.M., Telfer, W.H.: A follicle cell contribution to the yolk spheres of moth oocytes. Tiss. Cell1, 633–644 (1969)Google Scholar
  5. Anderson, L.M., Telfer, W.H.: Trypan blue inhibition of yolk deposition—a clue to follicle cell function in the Cecropia moth. J. Embryol. Exp. Morphol.23, 35–52 (1970a)Google Scholar
  6. Anderson, L.M., Telfer, W.H.: Extracellular concentrating of proteins in the Cecropia moth follicle. J. Cell. Physiol.76, 37–53 (1970b)Google Scholar
  7. Ashhurst, D.E.: The connective tissue of insects. Ann. Rev. Entomol.13, 45–74 (1968)Google Scholar
  8. Ashhurst, D.E., Costin, N.M.: Insect mucosubstances. I. The mucosubstances of developing connective tissue inLocusta migratoria. Histochem. J.,3, 279–295 (1971a)Google Scholar
  9. Ashhurst, D.E., Costin, N.M.: Insect mucosubstances II. The mucosubstances of the central nervous systems. Histochem. J.3, 297–310 (1971b)Google Scholar
  10. Ashhurst, D.E., Costin, N.M.: Insect mucosubstances. III. Some mucosubstances of the nervous system of the wax moth (Galleria mellonella) and the stick insect (Carausius morosus) Histochem. J.3, 379–387 (1971c)Google Scholar
  11. Ashhurst, D.E., Patel, N.G.: Hyaluronic acid in cockroach ganglia. Ann. Entomol. Soc. Am.56, 182–184 (1963)Google Scholar
  12. Bast, R., Telfer, W.: Follicle cell protein synthesis and its contribution to the yolk of the Cecropia moth oocyte. Develop. Biol.52, 83–97 (1976)Google Scholar
  13. Bonhag, P.F.: Ovarian structure and vitellogenesis in insects. Ann. Rev. Entomol.3, 137–160 (1958)Google Scholar
  14. Comper, W.D., Laurent, T.C.: Physiological function of connective tissue polysaccharides. Physiol. Rev.58, 255–315 (1978)Google Scholar
  15. Davey, K., Huebner, E.: The response of the follicle cells ofRhodnuis prolixus to juvenile hormone and antigonadotropin in vitro. Can. J. Zool.52, 1407–1412 (1974)Google Scholar
  16. DeLoof, A., Lagasse, A., Bohyn, W.: Proteid yolk formation in the Colorado beetle with special reference to the mechanism of the selective uptake of hemolymph proteins. Koninkl. Nederl. Akad. V. Wet. Ser. C.75, 125–143 (1974)Google Scholar
  17. Ehrhardt, Von P.: Die Rolle von Methionin, Cystein, Cystin and Sulfat bei der künstlichen Ernährung vonNeomyzus (Aulacorthum) circumflexus Bukt (Aphidae, Homoptera, Insecta). Biol. Zbl.88, 335–348 (1969)Google Scholar
  18. Estes, Z.E., Faust, R.M.: Studies on the mucopolysaccharides of the greater wax mothGalleria mellonella (Linnnaeus) Comp. Biochem. Physiol.13, 443–452 (1964)Google Scholar
  19. Hilchey, J.D., Block, R.J., Miller, L.P., Weed, R.M.: The sulfur metabolism of insects. I. The utilization of sulfate for the formation of cystine and methionine by the German cockroach,Blattella germanica (L). Contrib. Boyce Thompson Inst.18, 109–123 (1955)Google Scholar
  20. Hoglund, L.: The comparative biochemistry of invertebrate mucoploysaccharides. V. Insecta (Calliphora erythrocephala) Comp. Biochem. Physiol.,53(B), 9–14 (1976a)Google Scholar
  21. Hoglund, L.: Changes in mucopolysaccharides during the development of the blowfly,Calliphora erythrocephala. J. Insect Physiol.22, 917–924 (1976b)Google Scholar
  22. Lane, N.J., Treherne, J.E.: Uptake of peroxidase by the cockroach nervous system. Tiss. Cell2, 413–425 (1970)Google Scholar
  23. Laurent, T.C., Bjork, I; Pietruszkiewicz, A., Persson, H.: On the interaction between polysaccharides and other molecules. II. The transport of globular particles through hyaluronic acid solutions. Biochem. Biophys. Acta,78, 351–359 (1963)Google Scholar
  24. Melius, M.E., Telfer, W.H.: An autoradiographic analysis of yolk deposition in the Cecropia moth oocyte. J. Morphol.129, 1–16 (1969)Google Scholar
  25. Nisizawa, K., Yamaguchi, T., Handa, N., Maeda, M., Yamazaki, H.: Chemical nature of a uronic acid-containing polysaccharide in the peritrophic membrane of the silkworm. Biochem. J. (Tokyo)54, 419–426 (1963)Google Scholar
  26. Pan, M.L., Wallace, R.A.: Cecropia vitellogenin: isolation and characterization. Am. Zool.14, 1239–1242 (1974)Google Scholar
  27. Pratt, G.E., Davey, K.G.: The corpus allatum and oogenesis inRhodnius prolixus (Stal). J. Exp. Biol.56, 201–214 (1972)Google Scholar
  28. Roth, T.F., Porter, K.R.: Yolk protein uptake in the oocytes of the mosquitoAedes aegypti.J. Cell Biol. 20, 313–332 (1964)Google Scholar
  29. Rubenstein, E.: The role of an epithelial occlusion zone in the termination of vitellogenesis inHyalophora cecropia ovarian follicles. Develop. Biol. (in press) (1979)Google Scholar
  30. Stay, B.: Protein uptake in the oocytes of the Cecropia moth. J. Cell Biol.26, 49–62 (1965)Google Scholar
  31. Telfer, W. H.: The route of entry and localization of blood proteins in the oocyte of saturniid moths. J. Biophys. Biochem. Cytol.9, 747–759 (1961)Google Scholar
  32. Telfer, W.H., Anderson, L.M.: Changes associated with the initiation of a terminal growth phase in the oocyte of the Cecropia moth. Develop. Biol.17, 512–535 (1968)Google Scholar
  33. Telfer, W.H., Smith, D.S.: Aspects of egg formation. Symp. Royal Entomol. Soc. London5, 117–134 (1970)Google Scholar
  34. Treherne, J.E., Pichon, Y.: The insect blood-brain barrier. Adv. Insect Physiol.9, 257–313 (1972)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • William H. Telfer
    • 1
  1. 1.Department of BiologyUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations