Early grey crescent formation experimentally induced by cycloheximide in the axolotl oocyte

  • Simone Grinfeld
  • Jean-Claude Beetschen


The effects of cycloheximide (CH) on grey crescent formation in artificially maturedAmbystoma mexicanum oocytes were determined. CH induced grey crescent formation after a few hours, especially after a 45° to 90° rotation from the vertical animal-vegetal axis. With low concentrations of CH (about 0.5 ng/oocyte), meiosis was still able to proceed normally to the stable second metaphase stage, but higher concentrations blocked it after 1st polar body extrusion and an interphasic nucleus appeared. Such effects were compared to those of inactone, an analogue of cycloheximide, which as a pure substance does not inhibit protein synthesis, but still contained a small amount of CH in the available samples. It is concluded that grey crescent formation can occur in non-activated oocytes. The effects of cycloheximide might be due to partial inhibition of protein synthesis and the presence of a proteinic inhibitor of the symmetry reaction in the normal oocyte is suggested.

Key words

Axolotl oocyte Meiotic maturation Grey crescent Cycloheximide activation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ancel P, Vintemberger P (1948) Recherches sur le déterminisme de la symétrie bilatérale dans l'œuf des Amphibiens. Bull Biol Fr Belg Suppl 31:1–182Google Scholar
  2. Asselineau J, Zalta JP (1973) Les Antibiotiques. Structure et exemples de mode d'action. Hermann, Paris, pp 197–198Google Scholar
  3. Beetschen JC (1979) Recherches expérimentales sur la symétrisation de l'oocyte et de l'œuf d'Axolotl: facteurs conditionnant l'apparition précoce du croissant gris à la suite d'un choc thermique. CR Acad Sc Paris Ser D 288:643–688Google Scholar
  4. Benford HH, Namenwirth M (1974) Precocious appearance of the grey crescent in heat-shocked Axolotl eggs. Dev Biol 39:172–176PubMedGoogle Scholar
  5. Brachet J (1977) An old enigma: the grey crescent of Amphibian eggs. Curr Top Dev Biol 11:133–186PubMedGoogle Scholar
  6. Chung HM, Malacinski GM (1980) Establishment of the dorsal/ventral polarity of the Amphibian embryo: use of ultraviolet irradiation and egg rotation as probes. Dev Biol 80:120–133PubMedGoogle Scholar
  7. Chung HM, Malacinski GM (1981) A comparative study of the effects of egg rotation (gravity orientation) and UV irradiation on anuran vs. urodele Amphibian eggs. Differentiation 18:185–189PubMedGoogle Scholar
  8. Drury KC, Schorderet-Slatkine S (1975) Effects of cycloheximide on the “autocatalytic” nature of the maturation promoting factor (MPF) in oocytes ofXenopus laevis. Cell 4:269–274PubMedGoogle Scholar
  9. Gerhart J, Ubbels G, Black S, Hara K, Kirschner M (1981) A reinvestigation of the role of the grey crescent in axis formation inXenopus laevis. Nature 292:511–516PubMedGoogle Scholar
  10. Godeau F, Boquet P, Schorderet-Slatkine S, Schorderet M, Baulieu EE (1980) Studies of microbial toxins inXenopus laevis oocytes. Exp Cell Res 129:133–137PubMedGoogle Scholar
  11. Kirschner M, Gerhart JC, Hara K, Ubbels GA (1980) Initiation of the cell cycle and establishment of bilateral symmetry inXenopus eggs. Symp Soc Dev Biol 38:187–215Google Scholar
  12. Malacinski GM, Chung HM (1981) Establishment of the site of involution at novel locations on the Amphibian embryo. J Morphol 169:149–159Google Scholar
  13. Manes ME, Elinson RP, Barbieri FD (1978) Formation of the Amphibian grey crescent: effects of colchicine and cytochalasin B. Wilhelm Roux's Arch 185:99–104Google Scholar
  14. Merriam RW (1971) Progesterone induced maturational events in oocytes ofXenopus laevis. I. Continuous necessity for diffusible calcium and magnesium. Exp Cell Res 68:75–80PubMedGoogle Scholar
  15. Pasteels J (1946) Sur la structure de l'œuf insegmenté d'Axolotl et l'origine des prodromes morphogénétiques. Acta Anat 2:1–16Google Scholar
  16. Pasteels J (1964) The morphogenetic role of the cortex of the Amphibian egg. Adv Morphogen 3:363–388Google Scholar
  17. Scharf SR, Gerhart JC (1980) Determination of the dorsal-ventral axis in eggs ofXenopus laevis. Complete rescue of UV-impaired eggs by oblique orientation before first cleavage. Dev Biol 79:181–198PubMedGoogle Scholar
  18. Schuetz AW, Samson D (1979) Nuclear requirement for post-maturational cortical differentiation of Amphibian oocytes: effects of cycloheximide. J Exp Zool 210:307–320PubMedGoogle Scholar
  19. Sentein P (1976) Action de la cycloheximide sur les noyaux de l'œuf de Triton au début de la segmentation. Arch Biol 87:43–68Google Scholar
  20. Sentein P (1981) Nuclear and mitotic abnormalities produced by cycloheximide in the newt egg during cleavage and their relationship to the cell cycle. Exp Cell Biol 49:98–117PubMedGoogle Scholar
  21. Signoret J, Briggs R, Humphrey RR (1962) Nuclear transplantation in the Axolotl. Dev Biol 4:134–164PubMedGoogle Scholar
  22. Ubbels G (1978) Symmetrization of the fertilized egg ofXenopus laevis (studied by cytological, cytochemical and ultrastructural methods) Mem Soc Zool Fr 41:103–116Google Scholar
  23. Vilain JP (1978) Maturation in vitro des ovocytes dePleurodeles waltlii (Amphibien Urodèle) Mem Soc Zool Fr 41:93–102Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Simone Grinfeld
    • 1
  • Jean-Claude Beetschen
    • 1
  1. 1.Laboratoire de Biologie généraleUniversité Paul-SabatierToulouseFrance

Personalised recommendations