Skip to main content
Log in

Quantitative study of regression and regeneration of the thymic cell population after X-irradiation in the newtPleurodeles waltlii Michah

  • Published:
Wilhelm Roux's archives of developmental biology Aims and scope Submit manuscript

Summary

The changes in cell numbers of different thymic cell populations and the conditions governing the regeneration of these populations and the thymus itself were examined after X-irradiation (700 rads) of different parts of the body. The general effects of the irradiation were studied in each experimental group in terms of mortality and growth rate. The particular effects on each thymic cell population were studied by the measurement of mitotic activity and of evaluation of the changes in numbers among these populations in the thymus itself, and were compared with the effects in the granulopoietic layer of the liver and in the spleen. The great reduction in the number of lymphocytes after irradiation demonstrates that they are more radiosensitive than other cell types; this reduction can be compensated for by the arrival of new lymphoid cells originating from other lymphoid organs (if they have been protected from irradiation) and by allowing thymic regeneration. Thus, irradiation has indirect effects on non-irradiated areas, and demonstrates that the lymphoid cell population has a high potential for multidirectional migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackerman GA, Hostetler JR (1970) Morphological studies of the embryonic rabbit thymus: the in situ epithelial versus the extrathymic derivation of the initial populations of lymphocytes in the embryonic thymus. Anat Rec 166:27–46

    Google Scholar 

  • Auerbach R (1961) Experimental analysis of the origin of cell types in the development of the mouse thymus. Dev Biol 3:336–354

    Google Scholar 

  • Boersma WJA, Daculsi R, van der Westen G (1981a) Thymocyte regeneration after bone marrow transplantation. I. Regeneration and quantification of thymocyte progenitor cells in the bone marrow. Cell Tissue Kinet 14:179–196

    Google Scholar 

  • Boersma WJA, Daculsi R, van der Westen G (1981b) Postirradiation thymocytes regeneration after bone marrow transplantation. II. Physical characteristics of thymocyte progenitor cells. Cell Tissue Kinet 14:197–210

    Google Scholar 

  • Bowns M, Sunnell LA (1977) Developmental effects of X-irradiation of early Drosophila embryos. J Embryol Exp Morphol 39:253–259

    Google Scholar 

  • Charlemagne J (1974) Larval thymectomy and transplantation immunity in the UrodelePleurodeles waltlii Michah (Salamandridae). Eur J Immunol 4:390–392

    Google Scholar 

  • Charlemagne J (1977) Thymus development in amphibians. Colonization of thymic endodermal rudiments by lymphoids stemcells of mesenchymal origin in the UrodelePleurodeles waltlii Michah. Ann Immunol [Inst Pasteur] 128C:897–904

    Google Scholar 

  • Claesson MH, Hartman HR (1976) Cytodynamic in the thymus of young adult mice: a quantitative study on the loss of thymic blast cells and non-proliferative small thymocytes. Cell Tissue Kinet 9:273–286

    Google Scholar 

  • Cohen N, Turpen J (1980) Experimental analysis of lymphocyte ontogeny and differentiation in an amphibian model system. In: Gelfand EW, Doschs HM (eds) Biological basis of immunodeficiency. Raven Press, New York

    Google Scholar 

  • Deparis P, Jaylet A (1975) Recherches sur l'origine des différentes lignées de cellules sanguines chez l'amphibien UrodèlePleurodeles waltlii. J Embryol Exp Morphol 33:665–683

    Google Scholar 

  • Deparis P, Jaylet A (1976) Thymic lymphocyte origin in the newtPleurodeles waltlii studied by embryonic grafts between diploid and tetraploid embryos. Ann Immunol [Inst Pasteur] 1270:827–831

    Google Scholar 

  • Desvaux M (1974) Etude de la morphogenèse du thymus chezPleurodeles waltlii Michah. Bull Soc Zool [France] 99:259–265

    Google Scholar 

  • Dieterlen-Lièvre F (1975) On the origin of haemopoietic stem cells in the avian embryo: an experimental approach. J Embryol Exp Morphol 33:607–619

    Google Scholar 

  • Dieterlen-Lièvre F, Beaupain D, Martin C (1979) Potentialities and migrations of hemopoietic stem cells of yolk sac and intraembryonic origins, studied in avian chimeras obtained by blastoderm recombination. In: Cell lineage, stem cells and cell determination. INSERM Symposium No 10:175–189, Elsevier North Holland, Biomed Press

  • El-Arini MO, Osaba D (1973) Differentiation of thymus derived cells from precursors in mouse bone marrow. J Exp Med 137:821–829

    Google Scholar 

  • Fache B, Charlemagne J (1975) Influence on allograft rejection of thymectomy at different stages of larval development in Urodele amphibianPleurodeles waltlii Michah [Salamandridae]. Eur J Immunol 5:155–157

    Google Scholar 

  • Ford CE (1966) The traffic of lymphoid cells in the body. In: The thymus: experimental and clinical studies. (Ed by GEW Wolstenholme and R. Porter). Little Brown Co. Boston, p 131

    Google Scholar 

  • Gallien L, Durocher M (1957) Table chronologique du développement chezPleurodeles waltlii Michah. Bull Biol Fr et Belg 91:97–114

    Google Scholar 

  • Henry M, Charlemagne J (1980) Development of amphibian thymus. 1. Morphological differentiation, multiplication, migration and lysis of thymocytes in the UrodelePleurodeles waltlii. J Embryol Exp Morphol 57:219–232

    Google Scholar 

  • Henry M, Charlemagne J (1981) Development of amphibian thymus. II. Sequential occurrence of two epithelial cell types in the UrodelePleurodeles waltlii. Dev Comp Immunol 5:449–460

    Google Scholar 

  • Hurton JD, Manning MJ (1974) Effect of early thymectomy on the cellular changes occuring in the spleen of the clawed toad following administration of soluble antigen. Immunol 26:797–807

    Google Scholar 

  • Izard J, de Harven E (1969) Increased numbers of a characteristic type of reticular cells in the thymus and lymph nodes of leukemic mice: an electron microscopic study. Cancer Res 28:421–428

    Google Scholar 

  • Kadish JL, Basch RS (1975) Thymic regeneration after irradiation: evidence for an intra-thymic radioresistant T-cell precursor. J Immunol 114:452–458

    Google Scholar 

  • Kadish JL, Basch RS (1976) Hemopoietic thymocyte precursors. II. Assay and kinetics of the appearance of progeny. J Exp Med 143:1082–1099

    Google Scholar 

  • Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J Cell Biol; 27:137A-138A

    Google Scholar 

  • Lassila O (1981) Embryonic differentiation of lymphoid stem cells. Dev Comp Immunol 5:403–414

    Google Scholar 

  • Le Douarin NM, Jotereau FV (1975) Tracing of cells of the avian thymus through embryonic life in interspecific chimaeras. J Exp Med 142:17–34

    Google Scholar 

  • Le Douarin NM, Jotereau FV (1980) Homing of lymphoid stem cells to the thymus and the Bursa of Fabricius studied in avian embryo chimaeras. Immunology 15:285–302

    Google Scholar 

  • Le Douarin NM, Jotereau FV, Houssaint E, Belo M (1976) Ontogeny of the avian thymus and bursa of Fabricius studied in interspecific chimaeras. Ann Immunol [Inst Pasteur] 127C:849–856

    Google Scholar 

  • Leene W, Dyzings JM, Van Steeg C (1973) Lymphoid stem cell identification in the thymus and Bursa of Fabricius of the chick. Z Zellforsch Mikr Anat 136:521–533

    Google Scholar 

  • Little JB (1968) Delayed initiation of DNA synthesis in irradiated human diploid cells. Nature 218:1064–1065

    Google Scholar 

  • Manning MJ (1971) The effect of early thymectomy on histogenesis of the lymphoid organ in Xenopus laevis. J Embryol Exp Morphol 26:219–227

    Google Scholar 

  • Martoja R, Martoja M (1967) Initiation aux techniques de l'histologie animale. Masson, Paris

    Google Scholar 

  • Moore MAS, Owen JJT (1966) Experimental studies on the development of the bursa of Fabricius. Dev Biol 14:40–51

    Google Scholar 

  • Morato MJX, Correia MIR (1969) La formation de rosettes cellulaires dans le système nerveux central d'embryon de poulet soumis à l'action des rayons X. Bull Assoc Anat 145:294–300

    Google Scholar 

  • Moustafa Y, Chibon P (1982a) Etude morphométrique du thymus chez l'amphibien UrodelePleurodeles waltlii Michah.; étude histologique et dénombrement des cellules. Arch Anat Micr Morphog Exp 71:1–13

    Google Scholar 

  • Moustafa Y, Chibon P (1982b) Thymic cell population in Amphibia: quantitative study of the growth, stability and regression of the cell populations in the thymus of the newtPleurodeles waltlii Michah. Wilhelm Roux's Arch 191:309–319

    Google Scholar 

  • Nagata S, Tochinai S (1978) Isolated lymphocyte can restore allograft rejection capacity of early thymectomized Xenopus. Dev Comp Immunol 2:637–645

    Google Scholar 

  • Pieau C, Vasse J (1970) Effects généraux des rayons X sur l'embryon de Lézard vert [Lacerta viridis Laur] CR Acad Sci Paris 271 Sér D:2023–2026

    Google Scholar 

  • Pieau C, Vasse J (1971) Action des rayons X sur l'embryon de Lézard vert [Lacerta viridis Laur]. Ann Embryol Morphog 4:387–420

    Google Scholar 

  • Sharp JG, Thomas B (1977) Origin of the radioresistant precursor cells responsible for the initial phase of thymic regeneration after X-irradiation. J Ret Soc 22:169–179

    Google Scholar 

  • Takada A, Takada Y, Kim U, Ambrus JL (1971) Bone marrow, spleen and thymus regeneration patterns in mice after wholebody irradiation. Rad Res 45:522–533

    Google Scholar 

  • Till JE, McCulloch EA (1961) A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Rad Res 14:213–219

    Google Scholar 

  • Tochinai S (1978) Thymocyte stem cells inflow in Xenopus laevis after grafting diploid thymic rudiment into triploid tadpoles. Dev Comp Immunol 2:627–635

    Google Scholar 

  • Tochinai S, Nagata S, Katagiri CH (1976) Restoration of immune responsiveness in early-thymectomized Xenopus by implantation of histocompatible adult thymus. Eur J Immunol 6:711–719

    Google Scholar 

  • Turska R (1975) The effect of X-rays on the ultrastructure of spleen cells and the lymphoid layer cells of liver in Axolotls [Ambystoma tigrinum Green]. I. The golgi complex. Zool Polo 25:25–33

    Google Scholar 

  • Volpe EP, Robert T, Reinschmidt D (1977) Experimental studies on the embryonic derivation of thymic lymphocytes. In: Soloman JB, Horton JD (eds) Dev immunol 5–9:109–114

  • Volpe EP, Tompkins R, Reinschmidt D (1979) Clarification of studies on the origin of thymic lymphocytes. J Exp Zool 208:57–66

    Google Scholar 

  • Wallis SVJ, Leuchars E, Chwalinsky S, Davies AJS (1975) On the sparse seedling of bone marrow and thymus in radiation chimaeras. Transplantation 19:2–12

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moustafa, Y., Chibon, P. Quantitative study of regression and regeneration of the thymic cell population after X-irradiation in the newtPleurodeles waltlii Michah. Wilhelm Roux' Archiv 194, 69–78 (1984). https://doi.org/10.1007/BF00848346

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00848346

Key words

Navigation