Advertisement

Wilhelm Roux's archives of developmental biology

, Volume 182, Issue 3, pp 203–211 | Cite as

A study of germinal mosaicism inDrosophila melanogaster

  • Moti Nissani
Article

Summary

Three-hundred and twenty fertile,pal-induced Y-chromosome mosaic males and females were obtained. Fractional analysis of the sons of 55 somatically mosaic flies that were also germinally mosaic tentatively suggests that the number of functional primordial germ cells inDrosophila melanogaster is variable and that it is seldom greater than 24. From the observed 0.17 frequency of germinal mosaicism it was estimated that the average number of pole cells at the end of blastoderm formation is 45. At present, the germ cells afford the only opportunity to compare genetic estimates of the number of blastoderm or primordial cells with available histological counts. The good agreement between them suggests that both the fractional and the mosaic frequency methods for estimating primordial or blastoderm cell numbers of various larval and imaginal anatomical structures provide reasonably close approximations of the actual values.

Key words

Germinal mosaicism Number of primordial germ cells Drosophila 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, B.S.:Paternal loss (pal): a meiotic mutant inDrosophila melanogaster causing loss of paternal chromosomes. Genetics80, 267–296 (1975)Google Scholar
  2. Bridges, C.B.: Non-disjunction as proof of the chromosome theory of heredity. Genetics1, 1–51 (1916)Google Scholar
  3. Cooper, K.W.: Phenotypic effects of Y chromosome hyperploidy inDrosophila melanogaster, and their relation to variegation. Genetics41, 242–264 (1956)Google Scholar
  4. Counce, S.J.: The causal analysis of insect embryogenesis. In: Development Systems: Insects. (S.J. Counce and C.H. Waddington, eds.), Vol.2, pp. 1–156. London: Academic Press (1973)Google Scholar
  5. Falk, R., Orevi, N., Menzl, B.: A fate map of larval organs ofDrosophila and preblastoderm determination. Nature New Biol.246, 19–20 (1973)Google Scholar
  6. Garcia-Bellido, A., Merriam, J.R.: Cell lineage of the imaginal discs inDrosophila gynandromorphs. J. Exp. Zool.170, 61–76 (1969)Google Scholar
  7. Gehring, W.J., Nöthiger, R.: The imaginal discs ofDrosophila. In: Developmental Systems: Insects. (S.J. Counce and C.H. Waddington, eds.), Vol.2, pp. 211–290. London: Academic Press (1973)Google Scholar
  8. Hartl, D.L., Green, M.M.: Genetic studies of germinal mosaicism inDrosophila melanogaster using the mutablew c gene. Genetics65, 449–456 (1970)Google Scholar
  9. Hathaway, D.S., Selman, G.G.: Certain aspects of cell lineage and morphogenesis studied in embryos ofDrosophila melanogaster with an ultraviolet microbeam. J. Embryol. Exptl. Morphol.9, 310–325 (1961)Google Scholar
  10. Huettner, A.F.: The origin of the germ cells inDrosophila melanogaster. J. Morphol.37, 385–423 (1923)Google Scholar
  11. Illmensee, K.: The potentialities of transplanted early gastrula nuclei ofDrosophila melanogaster. Production of their imago descendants by germ-line transplantation. Wilhelm Roux' Archiv171, 331–343 (1973)Google Scholar
  12. Illmensee, K., Mahowald, A.P.: Transplantation of posterior polar plasm inDrosophila. Induction of germ cells at the anterior pole of the egg. Proc. Natl. Acad. Sci. USA71, 1016–1020 (1974)Google Scholar
  13. Lee, W.R., Kirby, C.J., Debney, C.W.: The relation of germ line mosaicism to somatic mosaicism inDrosophila. Genetics55, 619–634 (1967)Google Scholar
  14. Lindsley, D.L., Grell, E.H.: Genetic variations ofDrosophila melanogaster Carnegie Inst. Wash. Publ. 627 (1968)Google Scholar
  15. Muller, H.J., Altenburg, L.S., Meyer, H.U., Edmondson, M., Altenburg, J.: The lack of proportionality between mutation rate and ultraviolet dose inDrosophila. Heredity8, 153–185 (1954)Google Scholar
  16. Nissani, M., Lipow, C.: A method for estimating the number of blastoderm cells which give rise toDrosophila imaginal discs. Theoret. Appl. Genet.49, 3–8 (1977)Google Scholar
  17. Postlethwait, J.H., Schneiderman, H.A.: A clonal analysis of development inDrosophila melanogaster: morphogenesis, determination, and growth in the wild-type antenna. Develop. Biol.24, 477–519 (1971)Google Scholar
  18. Paulson, D.F., Waterhouse, D.F.: Experimental studies on pole cells and midgut differentiation inDiptera. Austral. J. Biol. Sci.13, 541–567 (1960)Google Scholar
  19. Rabinowitz, M.: Studies on the cytology and early embryology of the egg ofDrosophila melanogaster. J. Morphol.69, 1–49 (1941)Google Scholar
  20. Sonnenblick, B.P.: Germ cell movements and sex differentiation of the gonads in theDrosophila embryo. Proc. Natl. Acad. Sci. USA27, 484–489 (1941)Google Scholar
  21. Sonnenblick, B.P.: The early embryology ofDrosophila melanogaster. In: Biology ofDrosophila. (M. Demerec, ed.), p. 62–167. New York: Wiley (1950)Google Scholar
  22. Stern, C.: The prospective significance of imaginal discs inDrosophila. J. Morphol.67, 107–122 (1940)Google Scholar
  23. Sturtevant, A.H.: Theclaret mutant type ofDrosophila simulans: a study of chromosome elimination and of cell-lineage. Z. Wiss. Zool.35, 323–356 (1929)Google Scholar
  24. Turner, R.F., Mahowald, A.P.: Scanning electron microscopy ofDrosophila embryogenesis. 1. The structure of the egg envelopes and the formation of the cellular blastoderm. Develop. Biol.50, 95–108 (1976)Google Scholar
  25. Zalokar, M., Erk, I.: Division and migration of nuclei during early embryogenesis ofDrosophila melanogaster. J. Microscopie Biol. Cell.25, 97–106 (1976)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Moti Nissani
    • 1
  1. 1.Department of GeneticsUniversity of WisconsinMadisonUSA

Personalised recommendations