Localized synthesis of specific proteins during oogenesis and early embryogenesis inDrosophila melanogaster

  • Herwig O. Gutzeit
  • Walter J. Gehring


Protein synthesis in egg follicles and blastoderm embryos ofDrosophila melanogaster has been studied by means of two-dimensional gel electrophoresis. Up to 400 polypeptide spots have been resolved on autoradiographs. Stage 10 follicles (for stages see King, 1970) were labelled in vitro for 10 to 60 min with35S-methionine and cut with tungsten needles into an anterior fragment containing the nurse cells and a posterior fragment containing the oocyte and follicle cells. The nurse cells were found to synthesize a complex pattern of proteins. At least two proteins were detected only in nurse cells but not in the oocyte even after a one hour labelling period. Nurse cells isolated from stages 9, 10 and 12 follicles were shown to synthesize stage specific patterns of proteins. Several proteins are synthesized in posterior fragments of stage 10 follicles but not in anterior fragments. These proteins are only found in follicle cells. No oocyte specific proteins have been detected. Striking differences between the protein patterns of anterior and posterior fragments persist until the nurse cells degenerate. In mature stage 14 follicles, labelled in vivo, no significant differences in the protein patterns of isolated anterior and posterior fragments could be detected; this may be due to technical limitations. At the blastoderm stage localized synthesis of specific proteins becomes detectable again. When blastoderm embryos, labelled in vivo, are cut with tungsten needles and the cells are isolated from anterior and posterior halves, differences become apparent. The pole cells located at the posterior pole are highly active in protein synthesis and contribute several specific proteins which are found exclusively in the posterior region of the embryo. In this study synthesis of specific proteins could only be demonstrated at those developmental stages which are characterized by the presence of different cell types within the egg chamber, while no differences were detected when stage 14 follicles were cut and anterior and posterior fragments analyzed separately. The differences in the pattern of protein synthesis by pole cells and blastoderm cells indicate that even the earliest stages of determination are reflected by marked changes at the biochemical level.

Key words

Oogenesis Embryogenesis Two-dimensional gels Protein synthesis Drosophila melanogaster 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, D.T.: The comparative embryology of the Diptera. Annu. Rev. Entomol.11, 23–46 (1966)Google Scholar
  2. Bier, K.: Autoradiographische Untersuchungen über die Leistungen des Follikelepithels und der Nährzellen bei der Dotterbildung und Eiweißsynthese im Fliegenovar. Arch. Entwicklungsmech. Org.154, 552–575 (1963)Google Scholar
  3. Bonner, W.M., Laskey, R.A.: A film detection method for Tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur. J. Biochem.46, 83–88 (1974)PubMedGoogle Scholar
  4. Bownes, M., Hames, B.D.: Accumulation and degradation of three major yolk proteins inDrosophila melanogaster. J. Exp. Zool.200, 149–156 (1977)PubMedGoogle Scholar
  5. Bull, A.:Bicaudal, a genetic factor which affects the polarity of the embryo inDrosophila melanogaster. J. Exp. Zool.161, 221–241 (1966)Google Scholar
  6. Chan, L., Gehring, W.J.: Determination of blastoderm cells inDrosophila melanogaster. Proc. Natl. Acad. Sci. USA68, 2217–2221 (1971)PubMedGoogle Scholar
  7. Deusen, E.B. van: Sex determination in germ line chimeras ofDrosophila melanogaster. J. Embryol. Exp. Morphol.37, 173–185 (1976)Google Scholar
  8. Ephrussi, B., Beadle, G.W.: A technique of transplantation forDrosophila. Am. Nat.70, 218–225 (1936)Google Scholar
  9. Fielding, C.F.: Developmental genetics of the mutantgrandchildless ofDrosophila melanogaster. J. Embryol. Exp. Morphol.17, 375–384 (1967)Google Scholar
  10. Gelti-Douka, H., Gingeras, T.R., Kambysellis, M.P.: Yolk proteins inDrosophila: Identification and site of synthesis. J. Expt. Zool.187, 167–172 (1974)Google Scholar
  11. Gingeras, T.R., Gelti-Douka, H., Kambysellis, M.P.: Yolk proteins inDrosophila. DIS50, 58 (1973)Google Scholar
  12. Graziosi, G., Roberts, D.B.: Molecular anisotropy of the earlyDrosophila embryo. Nature258, 157–159 (1975)PubMedGoogle Scholar
  13. Illmensee, K.: Nuclear and cytoplasmic transplantation inDrosophila. In: Insect development (P.A. Lawrence, ed.), pp. 76–98. Roy. Entomol. Soc. London: Blackwell Sci. Publ. 1976Google Scholar
  14. Illmensee, K., Mahowald, A.P.: Transplantation of posterior polar plasm inDrosophila. Induction of germ cells at the anterior pole of the egg. Proc. Natl. Acad. Sci. USA71, 1016–1020 (1974)PubMedGoogle Scholar
  15. Kalthoff, K.: Position of targets and period of competence for UV-induction of the malformation ‘double abdomen’ in the egg ofSmittia spec. (Diptera, Chronomidae). Wilhelm Roux' Arch. Entwicklungsmech. Org.168, 63–84 (1971)Google Scholar
  16. Kandler-Singer, I., Kalthoff, K.: RNase sensitivity of an anterior morphogenetic determinant in an insect egg (Smittia sp., Chironomidae, Diptera). Proc. Natl. Acad. Sci. USA73, 3739–3743 (1976)Google Scholar
  17. King, R.C.: Ovarian development inDrosophila melanogaster. New York, London: Academic Press, 1970Google Scholar
  18. Laskey, R.A., Mills, A.D.: Quantitative film detection of3H and14C in polyacrylamide gels by fluorography. Eur. J. Biochem.56, 335–341 (1975)PubMedGoogle Scholar
  19. Lawrence, P.A., Morata, G.: The early development of mesothoracic compartments inDrosophila. An analysis of cell lineage, fate mapping and an assessment of methods. Dev. Biol.56, 40–51 (1977)PubMedGoogle Scholar
  20. Mahowald, A.P.: Oogenesis. In: Developmental systems: Insects (S.J. Counce, C.H. Waddington, eds.), Vol. 1, pp. 1–47 (1973)Google Scholar
  21. McKnight, S.L., Miller, O.L.: Ultrastructural patterns of RNA synthesis during early embryogenesis ofDrosophila melanogaster, Cell8, 305–319 (1976)PubMedGoogle Scholar
  22. Muckenthaler, F.A.: Mahowald, A.P.: DNA synthesis in the ooplasm ofDrosophila melanogaster. J. Cell Biol.28, 199–208 (1966)PubMedGoogle Scholar
  23. Nakao, T., Nakao, M., Nagai, F.: Microdetermination of proteins not affected by the presence of various buffers, sucrose, ATP, and eluates from polysaccharide derivates. Anal. Biochem.55, 358–367 (1973)PubMedGoogle Scholar
  24. Nüsslein-Volhard, C.: Genetic analysis of pattern-formation in the embryo ofDrosophila melanogaster. Wilhelm Roux' Arch. Entwicklungsmech. Org.183, 249–268 (1977)Google Scholar
  25. O'Farrell, P.H.: High resolution two-dimensional gel electrophoresis of proteins. J. Biol. Chem.250, 4007–4021 (1975)PubMedGoogle Scholar
  26. Petri, W.H., Wymann, A.T., Kafatos, F.C.: Specific protein synthesis in cellular differentiation. Dev. Biol.49, 185–199 (1976)PubMedGoogle Scholar
  27. Rice, T.B., Garen, A.: Localized defects of blastoderm formation in maternal effect mutants ofDrosophila. Dev. Biol.43, 277–286 (1975)PubMedGoogle Scholar
  28. Sander, K.: Specification of the basic body pattern in insect embryogenesis. Adv. Insect Physiol.12, 125–238 (1976)Google Scholar
  29. Srdić, Z., Beck, H., Gloor, H.: Yolk protein differences between species ofDrosophila. Experientia34, 1572–1574 (1978)Google Scholar
  30. Steiner, E.: Establishment of compartments in developing leg imaginal discs ofDrosophila melanogaster. Wilhelm Roux' Arch. Entwicklungsmech. Org.180, 9–31 (1976)Google Scholar
  31. Telfer, W.H.: Development and physiology of the oocyte nurse cell syncytium. Adv. Insect. Physiol.11, 223–319 (1975)Google Scholar
  32. Telfer, W.H.: Sulfate and glycosamine labelling of the intracellular matrix in vitellogenic follicles of a moth. Wilhelm Roux' Arch. Entwicklungsmech. Org.185, 347–362 (1979)Google Scholar
  33. Thierry-Mieg, D.: Study of a temperature-sensitive mutant grandchildless-like inDrosophila melanogaster. J. Microsc. Biol. Cell.25, 1–6 (1976)Google Scholar
  34. Waring, G.L., Allis, C.D., Mahowald, A.P.: Isolation of polar granules and the identification of polar granule-specific protein. Dev. Biol.66, 197–206 (1978)PubMedGoogle Scholar
  35. Warren, T.G., Mahowald, A.P.: Isolation and partial characterization of three major yolk polypeptides fromDrosophila melanogaster. Dev. Biol.68, 130–139 (1979)PubMedGoogle Scholar
  36. Wieschaus, E., Gehring, W.J.: Clonal analysis of primordial disc cells in the early embryo ofDrosophila melanogaster. Dev. Biol.50, 249–263 (1976)PubMedGoogle Scholar
  37. Woodruff, R.I., Telfer, W.H.: Polarized intercellular bridges in ovarian follicles of the Cecropia moth. J. Cell Biol.58, 172–188 (1973)PubMedGoogle Scholar
  38. Zalokar, M.: Sites of ribonucleic acid and protein synthesis inDrosophila melanogaster. Exp. Cell Res.19, 184–196 (1960)PubMedGoogle Scholar
  39. Zalokar, M.: Autoradiographic study of protein and RNA formation during early development ofDrosophila eggs. Dev. Biol.49, 425–437 (1976)PubMedGoogle Scholar
  40. Zalokar, M., Audit, C., Erk, I.: Developmental defects of female-sterile mutants ofDrosophila melanogaster. Dev. Biol.47, 419–432 (1975)PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Herwig O. Gutzeit
    • 1
  • Walter J. Gehring
    • 1
  1. 1.Biozentrum der Universität BaselBaselSwitzerland

Personalised recommendations