Electrophoretic spectra of nuclear proteins from embryos ofXenopus laevis

  • Viktor Holoubek
  • Heinz Tiedemann
Article

Summary

The changes in saline-soluble, 0.35 M NaCl-soluble and the residual fraction of nuclear proteins during early development ofXenopus were studied by analytical electrophoresis on sodium dodecyl sulfate polyacrylamide gel. The fractions were obtained by consecutive extraction of nuclei from the blastula, neurula and tail-bud stage of development. No qualitative and only limited quantitative differences were found when the proteins of any of the three fractions isolated from the neurula stage were compared with the proteins of the corresponding fraction isolated from the tail-bud stage. But the electrophoretic pattern of each of the three fractions of the nuclear proteins from the blastula stage differs significantly from the electrophoretic pattern of the same fraction isolated from the neurula or tail-bud stage. Compared with the blastula stage, in the two later stages the relative amounts of chromosomal proteins with apparent molecular weights below 30,000 are decreased. Proteins which migrate in electrophoresis in the positions of the very lysine-rich histones and of the proteins of the nuclear ribonucleo-protein particles are indicated among the chromosomal proteins of the blastula stage, and are visible as strong bands in the electrophorogram of 0.35 M NaCl-soluble proteins extracted from neurula or tail-bud stage nuclei.

Key words

Xenopus Blastula Neurula Tail-bud stage Nuclear proteins Electrophoresis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arceci, R.J., Senger, D.R., Gross, P.R.: The programmed switch in lysine-rich histone synthesis at gastrulation. Cell9, 171–178 (1976)Google Scholar
  2. Brown, D.D., Littna, E.: Synthesis and accumulation of DNA-like RNA during embryogenesis ofXenopus laevis. J. mol. Biol.20, 81–94 (1966a)Google Scholar
  3. Brown, D.D., Littna, E.: Synthesis and accumulation of low molecular weight RNA during embryogenesis ofXenopus laevis. J. mol. Biol.20, 95–112 (1966b)Google Scholar
  4. Chiu, J.F., Tsai, Y.H., Sakuma, K., Hnilica, L.S.: Regulation of in vitro mRNA transcription by a fraction of chromosomal proteins. J. biol. Chem.250, 9431–9433 (1975a)Google Scholar
  5. Chiu, J.F., Hunt, M., Hnilica, L.S.: Tissue-specific DNA-protein complexes during azo dye hepatocarcinogenesis Cancer Res.35, 913–919 (1975b)Google Scholar
  6. Cognetti, G., Settineri, D., Spinelli, G.: Developmental changes of chromatin nonhistone proteins in sea urchins. Expt. Cell Res.71, 465–468 (1972)Google Scholar
  7. Cohen, L.H., Newrock, K.M., Zweidler, A.: Stage-specific switches in histone synthesis during embryogenesis of the sea urchin. Science190, 994–997 (1975)Google Scholar
  8. Davidson, E.H.: Gene activity in early development. New York: Academic Press 1976Google Scholar
  9. Davidson, E.H., Crippa, M., Mirsky, A.E.: Evidence for the appearance of novel gene products during amphibian blastulation. Proc. Nat. Acad. Sci. (Washington)60, 152–159 (1968)Google Scholar
  10. Denis, H.: Role of messenger ribonucleic acid in embryonic development. Advan. Morphogenesis7, 115–150 (1968)Google Scholar
  11. Destrée, O.H.J., Toorop, d'A.H.J., Charles, R.: Analysis of histones from different tissues and embryos ofXenopus laevis (Daudin). II. Qualitative and quantitative aspects of nuclear histone during early stages of development. Cell Diff.2, 229–242 (1973)Google Scholar
  12. Douvas, A.S., Harrington, C.A., Bonner, J.: Major nonhistone proteins of rat liver chromatin: Preliminary identification of myosin, actin, tubulin, and tropomyosin. Proc. Nat. Acad. Sci. (Washington)72, 3902–3906 (1975)Google Scholar
  13. Elgin, S.C.R., Weintraub, H.: Chromosomal proteins and chromatin structure. Ann. Rev. Biochem.44, 725–774 (1975)Google Scholar
  14. Fujitani, H., Holoubek, V.: Nonhistone nuclear proteins of rat brain. J. Neurochem.23, 1215–1224 (1974)Google Scholar
  15. Fujitani, H., Holoubek, V.: Fractionation of nuclear proteins by extraction with solutions of different ionic strength. Int. J. Biochem.6, 547–554 (1975a)Google Scholar
  16. Fujitani, H., Holoubek, V.: Nuclear proteins of rat liver and of an amino azodye-induced hepatoma. Int. J. Cancer16, 329–338 (1975b)Google Scholar
  17. Garrard, W.T., Pearson, W.R., Wake, S.S., Bonner, J.: Stoichiometry of chromatin proteins. Biochem. Biophys. Res. Commun.58, 50–57 (1974)Google Scholar
  18. Gineitis, A.A., Stankevičiute, J.V., Vorob'ev, V.I.: Chromatin proteins from normal, vegetalized, and animalized sea urchin embryos. Develop. Biol.52, 181–192 (1976)Google Scholar
  19. Gurdon, J.B., Woodland, H.R.: The influence of the cytoplasm on the nucleolus during cell differentiation, with special reference to RNA synthesis during amphibian cleavage. Proc. Roy. Soc. B173, 99–111 (1969)Google Scholar
  20. Hill, R.J., Maundrell, K., Callan, H.G.: Nonhistone proteins of the oocyte nucleus of the newt. J. Cell Sci.15, 145–161 (1974)Google Scholar
  21. Hill, R.J., Poccia, D.L., Doty, P.: Towards a total macromolecular analysis of sea urchin embryo chromatin. J. mol. Biol.61, 445–462 (1971)Google Scholar
  22. Inoue, K.: Precipitin reactions and developmental arrest by antisera in amphibian embryos. Develop. Biol.3, 657–683 (1961)Google Scholar
  23. Jantzen, H., Gasc, J.M., Tiedemann, H.: Differences in ribonucleic acid populations of amphibian embryos measured by the hybridization method. Hoppe-Seyler's Z. f. physiol. Chem.351, 579–587 (1970)Google Scholar
  24. Kohl, D.M., Greene, R.F., Flickinger, R.A.: The role of RNA polymerase in the control of RNA synthesis in vitro fromRana pipiens embryo chromatin. Biochim. Biophys. Acta (Amsterdam)179, 28–38 (1969)Google Scholar
  25. Marks, D.B., Kanefsky, T., Keller, B.J., Marks, A.D.: The presence of histone H1° in human tissues. cancer Res.35, 886–889 (1975)Google Scholar
  26. Marsh, W.H., Fitzgerald, P.J.: Pancreas acinar cell regeneration. XIII. Histone synthesis and modification. Fed. Proc.32, 2119–2125 (1973)Google Scholar
  27. Nieuwkoop, P.D., Faber, J.: “Normal table ofXenopus laevis” (Daudin). Amsterdam: North Holland Pub. Co. 1956Google Scholar
  28. Paul, J., Gilmour, R.S.: Organ-specific restriction of transcription in mammalian chromatin. J. mol. Biol.34, 305–316 (1968)Google Scholar
  29. Pederson, T.: Gene activation in eukaryotes: Are nuclear acidic proteins the cause or the effect? Proc. Nat. Acad. Sci. (Washington)71, 617–621 (1974)Google Scholar
  30. Romanovský, A.: Studies on antigenic differentiation in the embryonic development ofRana temporaria L. I. Agar precipitation tests. Folia Biol.10, 1–11 (1974a)Google Scholar
  31. Romanovský, A.: Studies on antigenic differentiation in the embryonic development ofRana temporaria L. II. Ring test. Folia Biol.10, 12–21 (1974b)Google Scholar
  32. Seale, R.L., Aronson, A.I.: Chromatin-associated proteins of the developing sea urchin embryo. I. Kinetics of synthesis and characterization of nonhistone proteins. J. mol. Biol.75, 633–645 (1973)Google Scholar
  33. Ševaljević, L.: Developmental changes of chromatin nonhistone proteins of sea urchin embryos. Wilhelm Rou x Archiv174, 215–221 (1974)Google Scholar
  34. Spiegel, M.: A method for the removal of the jelly and vitelline membrane of the egg ofRana pipiens. Anat. Rec.111, 544 (1951)Google Scholar
  35. Theriault, J., Landesman, R.: An analysis of aciic nuclear proteins during the development ofXenopus laevis. Cell Diff.3, 249–257 (1974)Google Scholar
  36. Tiedemann, H.: Substances with morphogenetic activity in differentiation of vertebrates. In The Biochemistry of animal development (R. Weber, ed.), Vol. III, pp. 258–287, New York: Academic Press 1975Google Scholar
  37. Tiedemann, H., Born, J., Tiedemann, H.: Mechanisms of cell differentiation. Affinity of a morphogenetic factor to DNA. Wilhelm Rou x Archiv171, 160–169 (1972)Google Scholar
  38. Vorobyev, V.I., Gineitis, A.A., Vinogradova, I.A.: Histones in early embryogenesis. Exp. Cell. Res.57, 1–7 (1969)Google Scholar
  39. Wallace, R.A.: Studies on amphibian yolk. IV. An analysis of the main-body component of yolk platelets. Biochim. Biophys. Acta74, 505–518 (1963)Google Scholar
  40. Wang, S., Chiu, J.F., Klyszejko-Stefanowicz, L., Fujitani, H., Hnilica, L.S., Ansevin, A.T.: Tissue-specific chromosomal non-histone protein interactions with DNA. J. biol. Chem.251, 1471–1475 (1976)Google Scholar
  41. Yoshida, M., Holoubek, V.: Early effects of carcinogenic aminoazo dyes on the protein patterns and metabolism in rat liver. Int. J. Biochem.7, 259–270 (1976)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Viktor Holoubek
    • 1
    • 2
  • Heinz Tiedemann
    • 1
    • 2
  1. 1.Department of Human Biological Chemistry and GeneticsThe University of Texas Medical BranchGalvestonU.S.A.
  2. 2.Institut für Molekularbiologie und BiochemieFreie UniversitätBerlin

Personalised recommendations