Skip to main content
Log in

Asymmetrical rotations of blastomeres in early cleavage of gastropoda

  • Published:
Wilhelm Roux's archives of developmental biology Aims and scope Submit manuscript

Summary

The movements of blastomere surfaces marked with carbon particles during cytokinesis of the Ist–IVth cleavage divisions in the eggs of the gastropodsLymnaea stagnalis, L. palustris, Physa acuta and Ph. fontinalis have been studied by time-lapse cinematographic methods. The vitelline membrane was removed with trypsin. At 2- and 4-cell stages shifts of nuclei have also been studied.

Symmetrical as well as asymmetrical surface movements (in respect to the furrow plane) have been revealed.

Symmetrical surface movements at the beginning of cytokinesis consist mainly in contraction of the furrow zone and in expansion of the more peripheral regions; between these there is a stationary zone. After the end of cytokinesis the furrow region expands.

Considerableasymmetrical surface movements have also been observed in all four divisions. From anaphase until the end of cytokinesis each of the two sister blastomeres rotates with respect to the other in such a way, that if viewed along the spindle axis, the blastomere nearest to the observer rotates dexiotropically in a dextral species and laeotropically in a sinistral species (primary rotations). After the completion of cytokinesis the blastomeres may rotate in a reverse direction. The latter rotations are less pronounced in the IInd and IIIrd divisions and most pronounced in the IVth division. Blastomeres with the vitelline membrane intact retain a slight capacity for primary rotations. In normal conditions nuclei of the first two blastomeres shift mainly laeotropically in dextral species, but dexiotropically in sinistral species, being carried along by the reverse surface rotations.

The invariable primary asymmetrical rotations of blastomeres seem to be the basis of enantiomorphism in molluscan cleavage. They are assumed to be determined by an asymmetrical structure of the contractile ring carrying out the cytokinesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bluemink, J. G.: The subcellular structure of the blastula ofLymnaea stagnalis L. (Mollusca) and the mobilization of the nutrient reserve. Thesis, Utrecht University, Rotterdam (1967)

    Google Scholar 

  • Boycott, A. E., Diver, C., Garstang, S. L., Turner, F. M.: The inheritance of sinistrality inLymnaea peregra (Mollusca, Pulmonata). Phil. Trans. B219, 51–131 (1931)

    Google Scholar 

  • Cather, J. N.: Cellular interactions in the regulation of development in annelids and molluscs. Advanc. Morphogenes.9, 67–125 (1971)

    Google Scholar 

  • Conklin, Ed. G.: Embryology ofCrepidula. J. Morph.13, 1–127 (1897)

    Google Scholar 

  • Conklin, Ed. G.: Karyokinesis and cytokinesis in the maturation, fertilization and cleavage ofCrepidula and other Gasteropoda. J. Acad. Nat. Sci. Phil.12, 1–121 (1902)

    Google Scholar 

  • Conklin, Ed. G.: The cause of inverse symmetry. Anat. Anz.23, 577–588 (1903)

    Google Scholar 

  • Dan, K.: On “the stationary surface ring” in heart-shaped cleavage. J. exp. Biol.35, 400–406 (1958)

    Google Scholar 

  • Dan, K., Dan, J. C.: Behavior of the cell surface during cleavage. IV. Polar lobe formation and cleavage of the eggs ofIlyanassa obsoleta Say. Cytologia (Tokyo)12, 246 (1942)

    Google Scholar 

  • Dan, K., Yanagita, T., Sugiyama, M.: Behavior of the cell surface during cleavage. I. Protoplasma28, 66–81 (1937)

    Google Scholar 

  • Guerrier, P.: Nouvelles données expérimentales sur la segmentation et l'organogenèse chezLimax maximus (gastéropode pulmoné). Ann. embryol. et morphogenèse3, 283–294 (1970)

    Google Scholar 

  • Guerrier, P.: La polarization cellulaire et les caractères de la segmentation au cours de la morphogenèse spirale (Gastéropodes pulmonés, Lamellibranches, Annélides polychètes). Ann. Biol.10, 151–192 (1971)

    Google Scholar 

  • Hess, O.: Die Entwicklung von Halbkeimen bei dem Süßwasser-PulmonatenLimnaea stagnalis L. Wilhelm Roux' Arch. Entwickl.-Mech. Org.150, 124–145 (1957)

    Google Scholar 

  • Meshcheryakov, V. N., Beloussov, L. V. (in Russian): Changes in the spatial organization of early cleavage of molluscsLymnaea stagnalis L. andPhysa fontinalis L. under the effect of trypsin. Ontogenesis4, 359–372 (1973)

    Google Scholar 

  • Morrill, J. B., Perkins, F. O.: Microtubules in the cortical region of the egg ofLymnaea during cortical segregation. Develop. Biol.33, 206–212 (1973)

    Google Scholar 

  • Rappaport, R.: Cytokinesis in animal cells. Int. Rev. Cytol.31, 169–218 (1971)

    Google Scholar 

  • Raven, C. P.: Morphogenesis: the analysis of molluscan development, London-New York-Paris-Los Angeles: Pergamon Press 1958

    Google Scholar 

  • Raven, C. P.: Determination of the direction of spiral coiling inLymnaea peregra. Acta morph. neerl.-scand.10, 165–178 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meshcheryakov, V.N., Beloussov, L.V. Asymmetrical rotations of blastomeres in early cleavage of gastropoda. Wilhelm Roux' Archiv 177, 193–203 (1975). https://doi.org/10.1007/BF00848080

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00848080

Keywords

Navigation