Wilhelm Roux's archives of developmental biology

, Volume 177, Issue 3, pp 163–181 | Cite as

Differentiation of the female reproductive body in the colonial hydroidCampanularia flexuosa

  • Gail Susan Tucker
  • Charles R. Wyttenbach
Article
  • 35 Downloads

Summary

A comparison of two genetic stocks ofCampanularia flexuosa revealed consistent differences with respect to (1) the number of eggs present in the maturefemale reproductive body (gonangium), (2) the level on each upright stem at which the first gonangium forms, and (3) their preference for the formation of reproductive versusvegetative (side-branch) structures.

Alterations in food intake established the optimum feeding level for maximal production of structurally normal gonangia and also showed differences between stocks in the effects of reduced food intake on gonangial versus vegetative growth.

A staging series for gonangiogenesis was developed from observations of filling of the gonangium with primordial egg cells (PEC), gonangial elongation, funnel maturation and oogenesis.

When upright segments bearing immature gonangia are isolated from the stolon the gonangia frequently resorb, transform into vegetative outgrowths, or form structurally abnormal gonangia bearing fewer germ cells than normal. These responses, and the observed accumulation of PEC at sites of presumptive gonangial outgrowth, support a stolonic origin hypothesis for PEC and implicate PEC and oocytes in the initiation, maintenance and maturation of structurally normal gonangia. In addition, continued differentiation of the gonangial structure appears to be necessary for oocyte maturation.

Possible mechanisms for somatic and gametic cell recruitment, and the theoretical importance of cellular proliferation, aging, cell-shape changes, cell movement and cellular interactions in normal gonangial differentiation are discussed.

Keywords

Food Intake Germ Cell Vegetative Growth Maximal Production Oocyte Maturation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allman, G. J.: Report on the present state of our knowledge of the reproductive system in the Hydroida. Rep. 33rd Meet. Brit. Ass. Adv. Sci. 351–426 (1863).Google Scholar
  2. Beloussov, L. V., Badenko, L. A., Katchurin, A. L., Kurilo (Filatcheva) L. F.: Cell movements in morphogenesis of hydroid polypes. J. Embryol. exp. Morph.27, 317–337 (1972).Google Scholar
  3. Beloussov, L. V., Dorfman, J. G.: On the mechanics of growth and morphogenesis in hydroid polyps. Amer. Zool.14, 719–734 (1974).Google Scholar
  4. Brock, M. A.: Ultrastructural studies on the life cycle of a short-lived metazoan,Campanularia flexuosa. II. Structure of the old adult. J. Ultrastruct. Res.32, 118–141 (1970).Google Scholar
  5. Burnett, A. L.: The acquisition, maintenance, and lability of the differentiated state inHydra. In: The stability of the differentiated state (H. Ursprung, ed.), p. 109–127. Berlin-Heidelberg-New York: Springer 1968.Google Scholar
  6. Crowell, S.: The regression-replacement cycle of hydranths ofObelia andCampanularia. Physiol. Zool.26, 319–327 (1953).Google Scholar
  7. Crowell, S.: Differential responses of growth zones to nutritive level, age and temperature in the colonial hydroidCampanularia. J. Exp. Zool.134, 63–90 (1957).Google Scholar
  8. Dantschakoff, V.: Keimzelle und Gonade. IIb, Ganzheit des Gewebekomplexes als Faktor in der Entwicklung der Gonade. Z. Zellforsch.15, 581–644 (1932).Google Scholar
  9. Fraipont, J.: Recherches sur l'organisation histologique et le développement de laCampanularia angulata. Arch. Zool. exp. gén.8, 433–466 (1879–1880).Google Scholar
  10. Franchi, L. L., Mandl, A. M., Zuckerman, S.: The development of the ovary and the process of oogenesis. In: The ovary, vol. 1 (S. Zuckerman, ed.), p. 1–88. New York, N. Y.: Academic Press 1962.Google Scholar
  11. Gustafson, T., and Wolpert, L.: The cellular basis of morphogenesis and sea urchin development. Int. Rev. Cytol.15, 139–214 (1963).Google Scholar
  12. Hale, L. J.: Cell movements, cell division and growth in the hydroidClytia johnstoin. J. Embryol. exp. Morph.12, 517–538 (1964).Google Scholar
  13. Hale, L. J.: The pattern of growth ofClytia johnstoni. J. Embryol. exp. Morph.29, 283–309 (1973).Google Scholar
  14. Hargitt, G. T.: Germ cells of coelenterates. I.Campanularia flexuosa. J. Morph.24, 383–419 (1913).Google Scholar
  15. Hargitt, G. T.: Germ cells of coelenterates. II.Clava leptostyla. J. Morph.27, 85–97 (1916).Google Scholar
  16. Hargitt, G. T.: Germ cells of coelenterates. III.Aglantha digitalis. IV. Hybocodon prolifer. J. Morph.28, 593–641 (1917).Google Scholar
  17. Hargitt, G. T.: Germ cells of coelenterates. V.Eudendrium ramosum. J. Morph.31, 1–23 (1917).Google Scholar
  18. Hauschka, T.: The role of hydroplasmic pressure in hydroid growth. Growth8, 321–336 (1944).Google Scholar
  19. Humphrey, R. R.: The developmental potencies of the intermediate mesoderm ofAmblystoma when transplanted into ventrolateral sites in other embryos: the primordial germ cells of such grafts and their role in the development of a gonad. Anat. Rec.40, 67–101 (1928).Google Scholar
  20. Knight, D. P.: Scleratization of the perisarc of the calyptoblastic hydroid,Laomedea flexuosa. I. The identification and localization of dopamine in the hydroid. Tissue and Cell2, 467–477 (1970).Google Scholar
  21. Knight, D. P.: Scleratization of the perisarc of the calyptoblastic hydroid,Laomedea flexuosa. II. Histochemical demonstration of phenol oxidase and attempted demonstration of peroxidase. Tissue and Cell3, 57–64 (1971).Google Scholar
  22. Miller, R. L.: Preliminary observations on maturation of the female gonangium ofCampanularia flexuosa. Biol. Bull.137, 409–410 (1969).Google Scholar
  23. Suddith, R. L.: Cell proliferation in the terminal regions of the internodes and stolons of the colonial hydroidCampanularia flexuosa. Amer. Zool.14, 745–756 (1974).Google Scholar
  24. Trinkaus, J. P.: The cellular basis ofFundulus epiboly. Adhesivity of blastula and gastrula cells in culture. Develop. Biol.7, 513–532 (1963).Google Scholar
  25. Trinkaus, J.: Mechanismus of morphogenetic movements. In: Organogenesis (R. L. Dehaan and H. Unsprung, eds.), p. 55–104. New York, N. Y.: Holt, Rinehart and Winston 1965.Google Scholar
  26. Tucker, G. S.: Dynamic factors in the differentiation of reproductive bodies in the colonial hydroidCampanularia flexuosa (Hincks). Ph. D. Thesis, University of Kansas, Lawrence, Kansas, 133 pp. (1973).Google Scholar
  27. Tucker, G. S.: Observations on oogenesis and vitellogenesis in the colonial hydroidCampanularia fletuosa. (In preparation).Google Scholar
  28. de Varenne, A.: Recherches sur les polypes hydraires (réproduction et développement). Arch. Zool. exp. gén.10, 611–710 (1882).Google Scholar
  29. Weismann, A.: Die Entstehung des Sexualzellen bei den Hydromedusen. Des Baues und der Lebenserscheinungen dieser Gruppe. 295 pp. Jena: Gustav Fischer 1883.Google Scholar
  30. Willier, B. H.: Sterile gonads and the problem of the origin of germ cells in the chick embryo. In: Colloque sur la Différenciation Sexuelle chez les Vertébres, p. 87–91. Paris: Centre National de la Recherche Scientifique 1951.Google Scholar
  31. Wyttenbach, C. R.: The dynamics of stolon elongation in the hydroid,Campanularia flexuosa. J. exp. Zool.167, 333–351 (1968).Google Scholar
  32. Wyttenbach, C. R.: Genetic variations in the mode of stolon growth in the hydroid,Campanularia flexuosa. Biol. Bull.137, 547–556 (1969).Google Scholar
  33. Wyttenbach, C. R.: Cell movements associated with terminal growth in colonial hydroids. Amer. Zool.14, 699–718 (1974).Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Gail Susan Tucker
    • 1
    • 2
    • 3
  • Charles R. Wyttenbach
    • 1
    • 2
  1. 1.Department of Physiology and Cell BiologyUniversity of KansasLawrenceU.S.A.
  2. 2.Marine Biological LaboratoryWoods HoleU.S.A.
  3. 3.Ophthalmology Research College of Physicians & SurgeonsColumbia UniversityNew YorkU.S.A.

Personalised recommendations