Skip to main content
Log in

Influence of fluid viscosity on waves in an initially deformed, compressible, elastic layer interacting with a fluid medium

  • Published:
International Applied Mechanics Aims and scope

Abstract

The propagation of harmonic waves along the interface of an initially stressed, compressible layer and a viscous, compressible fluid half-space is investigated. A dispersion relation that does not depend on the form of the elastic potential is derived on the basis of the three-dimensional linearized elasticity equations for elastic bodies with uniform initial deformations and on the linearized Navier-Stokes equations for a viscous Newtonian fluid at rest. The phase velocities and attenuation coefficients of the elastic modes are determined numerically as functions of the thickness of the elastic layer using a Murnaghan-type three-invariant elastic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Yu. Babich, A. N. Guz', and A. P. Zhuk, "Elastic waves in initially stressed bodies," Prikl. Mekh.,15, No. 4, 3–23 (1979).

    Google Scholar 

  2. L. M. Brekhovskikh, Waves in Layered Media, 2nd ed., Academic Press, New York (1980).

    Google Scholar 

  3. L. M. Brekhovskikh and O. A. Godin, Acoustics of Layered Media, Vol. I: Plane and Quasi-Plane Waves; Vol. II: Point Sources and Wave Beams, Springer-Verlag, Berlin-New York (1990, 1992).

    Google Scholar 

  4. L. M. Brekhovskikh and V. S. Goncharov, Mechanics of Continua and Wave Dynamics, Springer-Verlag, Berlin-New York (1985).

    Google Scholar 

  5. I. A. Viktorov, Acoustic Surface Waves in Solids [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  6. G. A. Grachev, E. A. Rivels, and A. V. Rozenberg, "Influence of thin ice on the propagation of low-frequency sound in shallow water," in: Mathematical Methods of Underwater Acoustics [in Russian], No. 2, Izd. Rost. Univ., Rostov-on-Don (1990), pp. 33–37.

    Google Scholar 

  7. A. N. Guz', Elasticity of Elastic Bodies with Finite Deformations [in Russian], Naukova Dumka, Kiev (1973).

    Google Scholar 

  8. A. N. Guz', "Representation of the general solutions of the linearized theory of elasticity of compressible bodies," Dokl. Akad. Nauk Ukr. Ser. A, No. 6, 700–704 (1975).

  9. A. N. Guz', Stability of Elastic Bodies in Hydrostatic Compression [in Russian], Naukova Dumka, Kiev (1979).

    Google Scholar 

  10. A. N. Guz', "Hydroelasticity problems for a viscous fluid and initially stressed elastic bodies," Dokl. Akad. Nauk,251, No. 2, 305–308 (1980).

    Google Scholar 

  11. A. N. Guz', "Representation of the solutions of the linearized Navier-Stokes equations," Dokl. Akad. Nauk,253, No. 4, 825–827 (1980).

    Google Scholar 

  12. A. N. Guz', "Aerohydroelasticity problems for initially stressed bodies," Prikl. Mekh.,16, No. 3, 3–21 (1980).

    Google Scholar 

  13. A. N. Guz', Elastic Waves in Initially Stressed Solids [in Russian], Naukova Dumka, Kiev (1986) Vols. 1 and 2.

    Google Scholar 

  14. A. N. Guz' and A. P. Zhuk, "Influence of initial stresses on the velocities of Stoneley waves," Prikl. Mat. Mekh.44, No. 6, 1095–1099 (1980).

    Google Scholar 

  15. A. N. Guz', A. P. Zhuk, and F. G. Makhort, Waves in an Initially Stressed Layer [in Russian], Naukova Dumka, Kiev (1976).

    Google Scholar 

  16. A. N. Guz', F. G. Makhort, and O. I. Gushcha, Introduction to Acoustoelasticity [in Russian], Naukova Dumka, Kiev (1977).

    Google Scholar 

  17. A. N. Guz', F. G. Makhort, O. I. Gushcha, and V. K. Lebedev, Fundamentals of Nondestructive Ultrasonic Stress Characterization in Solids [in Russian], Naukova Dumka, Kiev (1974).

    Google Scholar 

  18. A. P. Zhuk, "Stoneley waves in an initially stressed medium," Prikl. Mekh.,16, No. 1, 113–116 (1990).

    Google Scholar 

  19. L. N. Zakharov, "Sound propagation in a layer of a fresh-water reservoir under wintertime conditions," Akust. Zh.,20, No. 1, 132–133 (1974).

    Google Scholar 

  20. V. N. Krasil'nikov, "Influence of a thin elastic layer on sound propagation in a fluid half-space," Akust. Zh.,6, No. 2, 220–228 (1960).

    Google Scholar 

  21. L. A. Molotkov, "Dispersion relations for layered inhomogeneous elastic and fluid systems," in: Dynamical Problems in the Theory of Seismic Wave Propagation [in Russian], No. 5, Leningrad (1962), pp. 240–280.

  22. L. A. Molotkov, Matrix Method in the Theory of Wave Propagation in Layered Elastic and Fluid Media [in Russian], Nauka, Leningrad (1984).

    Google Scholar 

  23. G. I. Petrashen', L. A. Molotkov, and P. V. Krauklis, Waves in Layered Homogeneous, Isotropic, Elastic Media [in Russian], in two volumes, Nauka, Leningrad (1985).

    Google Scholar 

  24. F. D. Murnaghan, Finite Deformations of an Elastic Solid, Wiley, New York (1951).

    Google Scholar 

  25. J. W. Rayleigh, "On waves propagated along the plane surface of an elastic solid," Proc. London Math. Soc.,17, No. 253, 4–11 (1985/86).

    Google Scholar 

  26. R. Stoneley, "The elastic waves at the interface of separation of two solids," Proc. R. Soc. London Ser. A,106, No. 732, 416–429 (1924).

    Google Scholar 

Download references

Authors

Additional information

S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine, Kiev. Translated from Prikladnaya Mekhanika, Vol. 30, No. 9, pp. 3–9, September, 1994.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagno, A.M., Guz', A.N. & Shchuruk, G.I. Influence of fluid viscosity on waves in an initially deformed, compressible, elastic layer interacting with a fluid medium. Int Appl Mech 30, 643–649 (1994). https://doi.org/10.1007/BF00847075

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00847075

Keywords

Navigation