International Applied Mechanics

, Volume 29, Issue 2, pp 157–163 | Cite as

Two-component pendulum systems with free play

  • L. G. Lobas
  • V. G. Khrebet


Free Play Pendulum System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    L. G. Lobas, "Mathematical model of coupled systems with free play," Prikl. Mekh.,20, No. 6, 80–87 (1984).Google Scholar
  2. 2.
    L. G. Lobas, "Theory of circular play of three-component elasticially deformable systems," Prikl. Mekh.,21, No. 11, 104–110 (1985).Google Scholar
  3. 3.
    L. G. Lobas, "Path stability of two-component wheeled vehicle," Prikl. Mekh.,25, No. 4, 104–111 (1989).Google Scholar
  4. 4.
    L. G. Lobas and V. G. Verbitskii, Qualitative and Analytical Methods in the Dynamics of Wheeled Vehicles [in Russian], Naukova Dumka, Kiev (1990).Google Scholar
  5. 5.
    É. N. Sokol, Stability of steady motion of a double physical pendulum," Mat. Met. Fiz.-Mekh. Pol., No. 17, 90–94 (1983).Google Scholar
  6. 6.
    T. G. Strizhak, Methods of Investigating Pendulum-Type Dynamic Systems [in Russian], Nauka, KazSSR, Alma-Ata (1981).Google Scholar
  7. 7.
    M. Cheshankov and M. Slavkova, God., VUZ, Tekh. Mekh.,18, No. 2, 17–26 (1983).Google Scholar
  8. 8.
    J.-D. Jin and V. Matsuzaki, "Bifurcations in a two-degree-of-freedom elastic system with follower forces," J. Sound Vibr.,126, No. 2, 265–277 (1988).Google Scholar
  9. 9.
    J.-D. Jin and V. Matsuzaki, "Stability and bifurcations of a double pendulum subjected to a follower force," AIAA, ASME, ASCE, AHS, and ASC 30th Struct., Struct. Dyn. Mater. Conf. Mobile, AL, April 3–5, 1989, Collect. Techn. Pap., Part 1, Washington (1989), pp. 432–439.Google Scholar
  10. 10.
    E. Lindtner, A. Steindl, and H. Troger, "Stabilitätsverlust der gestreckten Lage eines räumlichen Doppelpendels mit elastischer Endlagerung unter einer Folgelast," Z. Angew. Math. Mech.,67, No. 4, 105–107 (1987).Google Scholar
  11. 11.
    J. W. Miles, "The pendulum from Huygens' horologium to symmetry breaking and chaos," in: Theoretical and Applied Mechanics, Proceedings of the Seventeenth International Congress, Grenoble, August 21–27, 1988, Amsterdam (1989), pp. 193–215.Google Scholar
  12. 12.
    R. Scheidl, H. Troger, and K. Zeman, "Coupled flutter and divergence bifurcation of a double pendulum," Int. J. Nonlinear Mech.,19, No. 2, 163–176 (1984).Google Scholar
  13. 13.
    A. Stribesky and H. Troger, "Globales Verzweigungsverhalten am Beispeil eines längselastischen Doppelpendels unter Folgelast," Z. Angew. Math. Mech.,68, No. 4, 126–128 (1988).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • L. G. Lobas
  • V. G. Khrebet

There are no affiliations available

Personalised recommendations