Advertisement

Journal of engineering physics

, Volume 45, Issue 1, pp 806–809 | Cite as

Nature of mass transfer in solids under conditions of impact loading

  • L. O. Zvorykin
  • V. M. Fal'chenko
Article
  • 29 Downloads

Abstract

The article presents an explanation of the anomalously high mobility of atoms under the conditions of impact loading when shock waves act on a crystal.

Keywords

Mass Transfer Statistical Physic Shock Wave High Mobility Impact Loading 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    L. N. Larikov, V. M. Fal'chenko, V. F. Mazanko, et al., “Anomalous acceleration of diffusion in impact loading of metals,” Dokl. Akad. Nauk SSSR,221, No. 5, 1073–1076 (1975).Google Scholar
  2. 2.
    L. N. Larikov, V. V. Nemoshkalenko, V. F. Mazanko, et al., “Investigation of the mechanism of anomalous mass transfer in high-speed plastic deformation,” Dokl. Akad. Nauk Ukr. SSR, Seriya A, No. 9, 830–833 (1978).Google Scholar
  3. 3.
    V. M. Fal'chenko, “The mobility of atoms in impact loading,” Metallofizika, No. 76, 21–28 (1979).Google Scholar
  4. 4.
    V. M. Volchkov, I. A. Kulakov, P. O. Pashkov, and V. A. Yakushov, “The possibility of accelerating diffusion in shock waves,” in: Metal Science and the Strength of Materials. Transactions of the Volgograd Polytechnic Institute, VPI, Volgograd (1972), pp. 211–213.Google Scholar
  5. 5.
    A. L. Ruoff, “Enhanced diffusion during plastic deformation by mechanical diffusion,” J. Appl. Phys.,38, No. 10, 3999–4012 (1967).Google Scholar
  6. 6.
    L. N. Larikov, V. F. Mazanko, and V. M. Fal'chenko, “The influence of the type of crystal lattice on diffusion in high-speed plastic deformation,” in: Diffusion Processes in Metals, Tula Polytechnic Inst. (1978), pp. 40–49.Google Scholar
  7. 7.
    V. A. Mogilevskii, V. V. Efremov, and I. 0. Mynkin, “Behavior of the crystal lattice in strong unidimensional compression,” Fiz, Goreniya Vzryva,13, No. 5, 750–754 (1977).Google Scholar
  8. 8.
    J. B. Gibson, A. N. Goland, M. Milgram, and G. H. Vineyard, “Dynamics of radiation damage,” Phys. Rev.,120, 1229–1235 (1960).Google Scholar
  9. 9.
    R. A. Jonson and E. Brown, “Point defects in copper,” Phys. Rev.,127, 446–453 (1962).Google Scholar
  10. 10.
    A. Seeger, “Elektronentheoretische Untersuchungen über Fehlstellen in Metallen,” Zs.Phys.,145. 161–183 (1956).Google Scholar
  11. 11.
    F. G. Fumi, “Vancancies in monovalent metals,” Philos, Mag.,46, 1007–1019 (1955).Google Scholar
  12. 12.
    A. Seeger and E. Mann, “Theory of defects in solids,” J. Phys. Chem. Solids,12, 326–333 (1960).Google Scholar
  13. 13.
    Ya. B. Zel'dovich, S. B. Kormer, M. V. Sinitsin, and A. I. Kuryapin, “Temperature and heat capacity of Plexiglas compressed by a shock wave,” Dokl. Akad. Nauk SSSR,122, 48–50 (1958).Google Scholar
  14. 14.
    S. B. Kormer, “Optical investigation of the properties of condensed dielectrics compressed by impact,” Usp. Fiz. Nauk,94, 641–687 (1968).Google Scholar
  15. 15.
    K. P. Gurov, Fundamentals of the Kinetic Theory [in Russian], Nauka, Moscow (1966).Google Scholar
  16. 16.
    E. V. Stupochenko, S. A. Losev, and A. I. Osinov, Relaxation Processes in Shock Waves [in Russian], Nauka, Moscow (1965).Google Scholar
  17. 17.
    Ya. I. Frenkel', Introduction to the Theory of Metals [in Russian], Gosudarstvennoe Izd. Fiziko-Matematicheskoi Literatury, Moscow (1958).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • L. O. Zvorykin
    • 1
  • V. M. Fal'chenko
    • 1
  1. 1.Institute of Metal PhysicsAcademy of Sciences of Ukrainian SSRKiev

Personalised recommendations