General Relativity and Gravitation

, Volume 18, Issue 1, pp 93–103 | Cite as

A new class of interior solutions for a stress-energy tensor of Segré characteristic [111, 1]

  • T. Biech
  • A. Das
Research Articles


The interior solutions of (the tetrad versions of) Einstein's field equations withT AB having Segré characteristic [111, 1] (which has all four eigenvalues distinct), are investigated. For this purpose amixed method, which combines Synge'sg method andT method, is introduced. Some of the tetrad equations are solved for the metric functions while the remaining equations are used to define the corresponding components ofT AB . As necessary conditions of the consistency of the mixed method the conservation equationsT AB B =0 are explicitly verified. Several simplifications and analysis of some differential inequalities show the existence of a new class of solutions which, in addition to having Segré characteristic [111, 1], also satisfy the strong energy conditions of Hawking and Ellis.


Energy Condition Differential Geometry Mixed Method Interior Solution Differential Inequality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Synge, J. L. (1964). Relativity: The General Theory (North-Holland Publishing Co., Amsterdam).Google Scholar
  2. 2.
    Petrov, A. Z. (1969).Einstein Spaces (Pergamon Press, London).Google Scholar
  3. 3.
    Plebanski, J. (1964).Acta Physics Polonica XXVI, 963.Google Scholar
  4. 4.
    Synge, J. L. (1966). inPerspectives in Geometry and Relativity: Essays in honour of Václav Hlavatý, B. Hoffman, ed. (Indiana University Press, Bloomington, Illinois), p. 7.Google Scholar
  5. 5.
    Hall, G. S. (1976).J. Phys.,A9, 514.Google Scholar
  6. 6.
    Kramer, D., Stephani, H., MacCallum, M., and Herlt, E. (1980).Exact Solutions of Einstein's Field Equations (VEB Deutscher Verlag der Wissenschaften, Berlin), p. 67.Google Scholar
  7. 7.
    Marek, J. J. J. (1967).Phys. Rev.,163, 1373.Google Scholar
  8. 8.
    Beem, J. K., and Ehrlich, P. E. (1981).Global Lorentzian Geometry (Marcel Dekker, New York).Google Scholar
  9. 9.
    Landau, L. D., and Lifschitz, E. M. (1975).The Classical Theory of Fields, 4th ed., (Pergamon, Oxford).Google Scholar
  10. 10.
    Treder, H. J. (1970).Int. J. Theor. Phys.,3, 23.Google Scholar
  11. 11.
    Hawking, S. W., and Ellis, G. F. (1973).The Large Scale Structure of Space-Time (Cambridge University Press, London).Google Scholar
  12. 12.
    Hall, G. S. (1982).Gen. Rel. Grav.,14, 1035.Google Scholar
  13. 13.
    Dingle, H. (1933).Proc. Natl. Acad.,19, 559.Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • T. Biech
    • 1
  • A. Das
    • 1
  1. 1.Department of Mathematics and StatisticsSimon Fraser UniversityBurnabyCanada

Personalised recommendations