Skip to main content

Advertisement

Log in

Does fluorine-18 fluorodeoxyglucose metabolic imaging of tumours benefit oncology?

  • Review Article
  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Fluoro-deoxyglucose (FDG) is a metabolic marker, which follows the same route into cells as that of glucose, and it can be radiolabelled wich fluorine-18,18F-FDG making it suitable for imaging with positron emission tomography (PET). The fact that rapidly proliferating cells such as tumour cells accumulate18F-FDG more avidly than those with a normal turnover rate has given rise to its potential in oncology. The rationale and previous published uses of18F-FDG in oncology are reviewed, together with the various analysis techniques and associated methodological difficulties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Office of Population Censuses and Surveys. Cancer statistics registrations. Series MB1 no. 21, 1993.

  2. de Silva R, Yamamoto Y, Rhodes CG, et al. Preoperative prediction of the outcome of coronary revascularization using positron emission tomography.Circulation 1992; 86: 1738–1742.

    Google Scholar 

  3. Ragosta M, Beller GA. The noninvasive assessment of myocardial viability.Clin Cardiol 1993; 16: 531–538.

    Google Scholar 

  4. Schelbert HR, Henze E, Phelps ME, Kuhl DE. Assessment of regional myocardial ischemia by positron-emission computed tomography.Am Heart J 1982; 103: 588–597.

    Google Scholar 

  5. Kushner M, Reivich M, Fieschi C, et al. Metabolic and clinical correlates of acute ischemic infarction.Neurology 1987; 37: 1103–1110.

    Google Scholar 

  6. Kushner M, Fieschi C, Alavi A, Silver F, Chawluk J, Reivich M. Local cerebral metabolic changes in acute ischemic strokes.Gerontology 1987, 33: 265–267.

    Google Scholar 

  7. Engel J Jr, Kuhl DE, Phelps ME, Crandall PH. Comparative localization of epileptic foci in partial epilepsy by PCT and EEG.Ann Neurol 1982; 12: 529–537.

    Google Scholar 

  8. Kumar A, Schapiro MB, Grady C, et al. High-resolution PET studies in Alzheimer's disease.Neuropsychopharmacology 1991; 4: 35–46.

    Google Scholar 

  9. Warburg O.The metabolisnn of tumors. New York: Richard Smith: 1931: 129–169.

    Google Scholar 

  10. Sokoloff L, Reivich M, Kennedy C, et al. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat.J Neurochem 1977; 28: 897–916.

    Google Scholar 

  11. Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-d-glucose: validation of method.Ann Neurol 1979; 6: 371–388.

    Google Scholar 

  12. Som P, Atkins HL, Bandoypadhyay D, et al. A fluorinated glucose analog, 2-fluoro-2-deoxy-d-glucose (F-18): nontoxic tracer for rapid tumor detection.J Nucl Med 1980; 21: 670–675.

    Google Scholar 

  13. Fukuda H, Matsuzawa T, Abe Y, et al. Experimental study for cancer diagnosis with positron-labeled fluorinated glucose analogs: [18F]-2-fluoro-2-deoxy-d-mannose: a new tracer for cancer detection.Eur J Nucl Med 1982; 7: 294–297.

    Google Scholar 

  14. Abe Y, Matsuzawa T, Fujiwara T, et al. Assessment of radiotherapeutic effects on experimental tumors using18F-2-fluoro-2-deoxy-d-glucose.Eur J Nucl Med 1986; 12: 325–328.

    Google Scholar 

  15. Minn H, Kangas L, Kellokumpu Lehtinen P, et al. Uptake of 2-fluoro-2-deoxy-d-[U-14C]-glucose during chemotherapy in murine Lewis lung tumor.Int J Rad Appl Instrum [B] 1992; 19: 55–63.

    Google Scholar 

  16. Di Chiro G, DeLaPaz RL, Brooks RA, et al. Glucose utilization of cerebral gliomas measured by [18F]fluorodeoxyglucose and positron emission tomography.Neurology 1982; 32: 1323–1329.

    Google Scholar 

  17. Patronas NJ, Brooks RA, DeLaPaz RL, Smith BH, Kornblith PL, Di Chiro G. Glycolytic rate (PET) and contrast enhancement (CT) in human cerebral gliomas.AJNR Am J Neuroradiol 1983; 4: 533–535.

    Google Scholar 

  18. Rhodes CG, Wise RJ, Gibbs JM, et al. In vivo disturbance of the oxidative metabolism of glucose in human cerebral gliomas.Ann Neurol 1983; 14: 614–626.

    Google Scholar 

  19. Suolinna EM, Haaparanta M, Paul R, Harkonen P, Solin O, Sipila H. Metabolism of 2-[18F]fluoro-2-deoxyglucose in tumor-bearing rats: chromatographie and enzymatic studies.Int J Rad Appl Instrum [B] 1986; 13: 577–581.

    Google Scholar 

  20. Flier JS, Mueckler MM, Usher P, Lodish HF. Elevated levels of glucose transport and transporter messenger RNA are induced byras orsrc oncogenes.Science 1987; 235: 1492–1495.

    Google Scholar 

  21. Farina FA, Adelman RC, Lo CH, Morris HP, Weinhouse S. Metabolic regulation and enzyme alterations in the Morris hepatomas.Cancer Res 1968; 28: 1897–1900.

    Google Scholar 

  22. Shatton JB, Morris HP, Weinhouse S. Kinetic, electrophoretic, and chromatographie studios on glucose-ATP phosphotransferases in rat hepatomas.Cancer Res 1969; 29: 1161–1172.

    Google Scholar 

  23. Kikuchi Y, Sato S, Sugimura T. Hexokinase isozyme patterns of human uterine tumors.Cancer 1972; 30: 444–447.

    Google Scholar 

  24. Bennett MI, Timperley WR, Taylor CB, Hill AS. Isoenzymes of hexokinase in the devoloping, normal and neoplastic human brain.Eur J Cancer 1978; 14: 189–193.

    Google Scholar 

  25. Weber G. Enzymology of cancer tells (second of two parts).N Engl J Med 1977; 296: 541–551.

    Google Scholar 

  26. Weber G. Enzymology of cancer tells (first of two parts).N Engl J Med 1977; 296: 486–492.

    Google Scholar 

  27. Nakada T, Kwee IL. Heterogeneity of regional cerebral glucose metabolism demonstrated in situ in rat brain by19F NMR rotating frame zeugmatography: one dimensional chemical shift imaging of normal and gliosarcoma implanted brain.Magn Reson Imaging 1987; 5: 259–266.

    Google Scholar 

  28. Coleman MT, Allen N. The hexose monophosphate pathway in ethylnitrosourea induced tumors of the nervous system.J Neurochem 1978; 30: 83–90.

    Google Scholar 

  29. Haberkorn U, Strauss LG, Reisser C, et al. Glucose uptake, perfusion, and cell proliferation in head and neck tumors: relation of positron emission tomography to flow cytometry [see comments].J Nucl Med 1991; 32: 1548–1555.

    Google Scholar 

  30. Okada J, Yoshikawa K, Itami M, et al. Positron omission tomography using fluorine-18-fluorodeoxyglucose in malignant lymphoma: a comparison with proliferative activity.J Nucl Med 1992; 33: 325–329.

    Google Scholar 

  31. Reisser C, Haberkorn U, Strauss LG. The relevante of positron emission tomography for the diagnosis and treatment of head and neck tumors.J Otolaryngol 1993; 22: 231–238.

    Google Scholar 

  32. Adler LP, Blair HF, Makley JT, et al. Noninvasive grading of musculoskeletal tumors using PET.J Nucl Med 1991; 32: 1508–1512.

    Google Scholar 

  33. Francavilla TL, Miletich RS, Di Chiro G, Patronas NJ, Rizzoli HV, Wright DC. Positron emission tomography in the detection of malignant degeneration of low-grade gliomas.Neurosurgery 1989; 24: 1–5.

    Google Scholar 

  34. Tyler IL, Diksic M, Villemure JG, et al. Metabolic and hemodynamic evaluation of gliomas using positron emission tomography.J Nucl Med 1987; 28: 1123–1133.

    Google Scholar 

  35. Minn H, Joensuu H, Ahonen A, Klemi P. Fluorodeoxyglucose imaging: a method to assess the proliferative activity of human cancer in vivo. Comparison with DNA flow cytometry in head and neck tumors.Cancer 1988; 61: 1776–1781.

    Google Scholar 

  36. Slosman DO, Spiliopoulos A, Couson F, et al. Satellite PET and lung cancer: a prospective study in surgical patients.Nucl Med Commun 1993; 14: 955–961.

    Google Scholar 

  37. Adler LP, Crowe JP, Al Kaisi NK, Sunshine JL. Evaluation of breast masses and axillary lymph nodes with [F-18] 2-deoxy-2-fluoro-d-glucose PET.Radiology 1993, 187: 743–750.

    Google Scholar 

  38. Wahl RL, Cody RL, Hutchins GD, Mudgett EE. Primary and metastatic breast carcinoma: initial clinical evaluation with PET with the radiolabeled glucose analogue 2-[F-18]-fluoro-2-deoxy-d-glucose.Radiology 1991; 179: 765–770.

    Google Scholar 

  39. Hanson MW, Glantz MJ, Hoffman JM, et al. FDG-PET in the selection of brain lesions for biopsy.J Comput Assist Tomogr 1991; 15: 796–801.

    Google Scholar 

  40. Wahl RL, Helvie MA, Chang AE, Andersson I. Detection of breast cancer in women after augmentation mammoplasty using fluorine-18-fluorodeoxyglucose-PET.J Nucl Med 1994; 35: 872–875.

    Google Scholar 

  41. Tse NY, Hoh CK, Hawkins RA, et al. The application of positron emission tomographic imaging with fluorodeoxyglucose to the evaluation of breast disease.Ann Surg 1992; 216: 27–34.

    Google Scholar 

  42. Wahl RL, Quint LE, Greenough RL, Meyer CR, White RI, Orringer MB. Staging of modiastinal non-small cell lung cancer with FDG PET, CT, and fusion images: preliminary prospective evaluation.Radiology 1994; 191: 371–377.

    Google Scholar 

  43. Knopp MV, Strauss LG, Haberkorn U, et al. PET of the thorax: assessment of its clinical application in tumor staging

  44. Beets G, Penninckx F, Schiepers C, et al. Clinical value of whole-body positron emission tomography with [18F]fluoro-deoxyglucose in recurrent colorectal cancer.Br J Surg 1994; 81: 1666–1670.

    Google Scholar 

  45. Hoh CK, Hawkins RA, Glaspy JA, et al. Cancer detection with whole-body PET using 2-[18F]fluoro-2-deoxy-d-glucose.J Comput Assist Tomogr 1993; 17: 582–589.

    Google Scholar 

  46. Karlan BY, Hawkins R, Hoh C, et al. Whole-body positron emission tomography with 2-[18F]-fluoro-2-deoxy-d-glucose can detect recurrent ovarian carcinoma.Gynecol Oncol 1993; 51: 175–181.

    Google Scholar 

  47. Yoshikawi K, Okada J, Uno K, et al. Evaluation of therapeutic effect on the malignant lymphoma by dynamic positron omission tomography technique using fluorine-18-2-deoxy-2-fluoro-d-glucose [abstract].J Nucl Med 1989; 30: 910.

    Google Scholar 

  48. Strauss LG, Tilgen W, Dimatrakopoulou A, Haberkorn U, Knopp M, Helius F. PET studios with F-18-deoxyglucose (FDG) in patients with metastatic melanoma prior to and after therapy [abstract].J Nucl Med 1990; 31: 804.

    Google Scholar 

  49. Kubota K, Yamada S, Ishiwata K, Ito M, Ido T. Positron omission tomography for treatment evaluation and recurrence detection compared with CT in long-term follow-up cases of lung cancer.Clin Nucl Med 1992, 17: 877–881.

    Google Scholar 

  50. Okazumi S, Isono K, Enomoto K, et al. Evaluation of liver tumors using fluorine- 18-fluorodeoxyglucose PET: characterization of tumor and assessment of effect of treatment [see comments].J Nucl Med 1992; 33: 333–339.

    Google Scholar 

  51. Wahl RL, Zasadny K, Helvie M, Hutchins GD, Weber B, Cody R. Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography: initial evaluation.J Clin Oncol 1993; 11: 2101–2111.

    Google Scholar 

  52. Jansson T, Westlin JE, Ahlstrom H, Lilja A, Langstrom B, Bergh J. Positron emission tomography studies in patients with locally advanced and/or metastatic breast cancer: a method for early therapy evaluation?J Clin Oncol 1995, 13: 1470–1477.

    Google Scholar 

  53. Fukuda H, Matsuzawa T, Ito M, Abe Y, Yoshioka S, Yamada K. Experimental and clinical study of cancer diagnosis with (F-18) FDG using positron emission tomography.J Nucl Med 1984; 25: 50.

    Google Scholar 

  54. Haberkorn U, Strauss LG, Dimitrakopoulou A, et al. PET studies of fluorodeoxyglucose metabolism in patients with recurrent colorectal tumors receiving radiotherapy.J Nucl Med 1991; 32: 1485–1490.

    Google Scholar 

  55. Ito K, Kato T, Tadokoro M, et al. Recurrent rectal cancer and scar: differentiation with PET and MR imaging.Radiology 1992; 182: 549–552.

    Google Scholar 

  56. Greven KM, Williams Dr, Keyes JJ, et al. Distinguishing tumor recurrence from irradiation sequelae with positron emission tomography in patients treated for larynx cancer.Int J Radiat Oncol Biol Phys 1994; 29: 841–845.

    Google Scholar 

  57. Di Chiro G, Oldfield E, Wright DC, et al. Cerebral necrosis after radiotherapy and/or intraarterial chemotherapy for brain tumors: PET and neuropathologic studies.AJR Am J Roentgenol 1988; 150: 189–197.

    Google Scholar 

  58. Patronas NJ, Di Chiro G, Brooks RA, et al. Work in progress: [18F]fluorodeoxyglucose and positron emission tomography in the evaluation of radiation necrosis of the brain.Radiology 1982; 144: 885–889.

    Google Scholar 

  59. Valk PE, Budinger TF, Levin VA, Silver P, Gutin PH, Doyle WK. PET of malignant cerebral tumors after interstitial brachytherapy. Demonstration of metabolic activity and correlation with clinical outcome.J Neurosurg 1988; 69: 830–838.

    Google Scholar 

  60. Strauss LG, Clorius JH, Schlag P, et al. Recurrence of colorectal tumors: PET evaluation.Radiology 1989; 170: 329–332.

    Google Scholar 

  61. Glantz MJ, Hoffman JM, Coleman RE, et al. Identification of early recurrence of primary central nervous system tumors by [18F]fluorodeoxyglucose positron emission tomography [see comments].Ann Neurol 1991; 29: 347–355.

    Google Scholar 

  62. Ogawa T, Kanno I, Shishido F, et al. Clinical value of PET with18F-fluorodeoxyglucose andl-methyl-11C-methionine for diagnosis of recurrent brain tumor and radiation injury.Acta Radiol 1991; 32: 197–202.

    Google Scholar 

  63. Lapela M, Grenman R, Kurki T, et al. Head and neck cancer: detection of recurrence with PET and 2-[F-18]fluoro-2-deoxyd-glucose.Radiology 1995; 197: 205–211.

    Google Scholar 

  64. Janus TJ, Kim EE, Tilbury R, Bruner JM, Yung WK. Use of [18F]fluorodeoxyglucose positron emission tomography in patients with primary malignant brain tumors.Ann Neurol 1993; 33: 540–548.

    Google Scholar 

  65. Patronas NJ, Di Chiro G, Kufta C, et al. Prediction of survival in glioma patients by means of positron emission tomography.J Neurosurg 1985; 62: 816–822.

    Google Scholar 

  66. Alavi JB, Alavi A, Chawluk J, et al. Positron emission tomography in patients with glioma. A predictor of prognosis.Cancer 1988; 62: 1074–1078.

    Google Scholar 

  67. Okada J, Yoshikawa K, Imazeki K, et al. The use of FDG-PET in the detection and management of malignant lymphoma: correlation of uptake with prognosis.J Nucl Med 1991; 32: 686–691.

    Google Scholar 

  68. Mineura K, Sasajima T, Kowada M, et al. Perfusion and metabolism in predicting the survival of patients with cerebral gliomas.Cancer 1994; 73: 2386–2394.

    Google Scholar 

  69. Okada J, Oonishi H, Yoshikawa K, et al. FDG-PET for predicting the prognosis of malignant lymphoma.Ann Nucl Med 1994; 8: 187–191.

    Google Scholar 

  70. Kennedy C, Sakurada O, Shinohara M, Jehle J, Sokoloff L. Local cerebral glucose utilization in the normal conscious macaque monkey.Ann Neurol 1978; 4: 293–301.

    Google Scholar 

  71. Reivich M, Alavi A, Wolf A, et al. Glucose metabolic rate kinetic model parameter determination in humans: the lumped constants and rate constants for [18F]fluorodeoxyglucose and [11C]deoxyglucose.J Cereb Blood Flow Metab 1985; 5: 179–192.

    Google Scholar 

  72. Kumar A, Braun A, Schapiro M, Grady C, Carson R, Herscovitch P. Cerebral glucose metabolic rates after 30 and 45 minute acquisitions: a comparative study.J Nucl Med 1992; 33: 2103–2105.

    Google Scholar 

  73. Duara R, Grady C, Haxby J, et al. Positron emission tomography in Alzheimer's disease.Neurology 1986; 36: 879–887.

    Google Scholar 

  74. Hamberg LM, Hunter GJ, Alpert NM, Choi NC, Babich JW, Fischman AJ. The dose uptake ratio as an index of glucose metabolism: useful parameter or oversimplification?J Nucl Med 1994; 35: 1308–1312.

    Google Scholar 

  75. Weinberg IN, Huang SC, Hoffman EJ, et al. Validation of PET-acquired input functions for cardiac studies [published erratum appears inJ Nucl Med 1988; 29: 1304].J Nucl Med 1988; 29: 241–247.

    Google Scholar 

  76. Choi Y, Hawkins RA, Huaug SC, et al. Parametric images of myocardial metabolic rate of glucose generated from dynamic cardiac PET and 2-[18F]fluoro-2-deoxy-d-glucose studies.J Nucl Med 1991; 32: 733–738.

    Google Scholar 

  77. Ohtake T, Kosaka N, Watanabe T, et al. Noninvasive method to obtain input function for measuring tissue glucose utilization of thoracic and abdominal organs.J Nucl Med 1991; 32: 1432–1438.

    Google Scholar 

  78. Germano G, Chen BC, Huang SC, Gambhir SS, Hoffman EJ, Phelps ME. Use of the abdominal aorta for arterial input function determination in hepatic and renal PET studies [see comments].J Nucl Med 1992; 33: 613–620.

    Google Scholar 

  79. Takikawa S, Dhawan V, Spetsieris P, et al. Noninvasive quantitative fluorodeoxyglucose PET studies with an estimated input function derived from a population-based arterial blood curve.Radiology 1993; 188: 131–136.

    Google Scholar 

  80. Kessler RM, Ellis JR Jr, Eden M. Analysis of emission tomographie scan data: limitations imposed by resolution and background.J Comput Assist Tomogr 1984; 8: 514–522.

    Google Scholar 

  81. Kuwert T, Ganslandt T, Jansen P, et al. Influence of size of regions of interest on PET evaluation of caudate glucose consumption.J Comput Assist Tomogr 1992; 16: 789–794.

    Google Scholar 

  82. Hoffman EJ, Huang SC. Phelps ME. Quantitation in positron emission computed tomography. 1. Effect of object size.J Comput Assist Tomogr 1979; 3: 299–308.

    Google Scholar 

  83. Keyes JW Jr. SUV: standard uptake or silly useless value?J Nucl Med 1995; 36: 1836–1839.

    Google Scholar 

  84. Zasadny KR, Wahl RL. Standardized uptake values of normal tissues at PET with 2-[fluorine-18]-fluoro-2-deoxy-d-glucose: variations with body weight and a method for correction.Radiology 1993; 189: 847–850.

    Google Scholar 

  85. Kim CK, Gupta NC, Chandramouli B, Alavi A. Standardized uptake values of FDG: body surface area correction is preferable to body weight correction [see comments].J Nucl Med 1994; 35: 164–167.

    Google Scholar 

  86. Langen KJ, Braun U, Rota Kops E, et al. The influence of plasma glucose levels on fluorine-18-fluorodeoxyglucose uptake in bronchial carcinomas.J Nucl Med 1993; 34: 355–359.

    Google Scholar 

  87. Lindholm P, Minn H, Leskinen KS, Bergman J, Ruotsalainen U, Joensuu H. Influence of the blood glucose concentration on FDG uptake in cancer — a PET study [see comments].J Nucl Med 1993; 34: 1–6.

    Google Scholar 

  88. Nelson T, Lucignani G, Atlas S, Crane AM, Dienel GA, Sokoloff L. Reexamination of glucose-6-phosphatase activity in the brain in vivo: no evidence for a futile cycle.Science 1985; 229: 60–62.

    Google Scholar 

  89. Huang SC, Phelps ME, Hoffman EJ, Sideris K, Selin CJ, Kuhl DE. Noninvasive determination of local cerebral metabolic rate of glucose in man.Am J Physiol 1980; 238: E69-E82.

    Google Scholar 

  90. Hawkins RA, Phelps ME, Huang SC. Effects of temporal sampling, glucose metabolic rates, and disruptions of the blood-brain barrier on the FDG model with and without a vascular compartment: studies in human brain tumors with PET.J Cereb Blood Flow Metab 1986; 6: 170–183.

    Google Scholar 

  91. Kato A, Diksic M, Yamamoto YL, Feindel W. Quantification of glucose utilization in an experimental brain tumor model by the deoxyglucose method.J Cereb Blood Flow Metab 1985; 5: 108–114.

    Google Scholar 

  92. Kapoor R, Scence AM, Muzi M, Graham MM, Abbott GL, Krohn KA. Determination of the deoxyglucose and glucose phosphorylation ratio and the lumped constant in rat brain and a transplantable rat glioma.J Neurochem 1989; 53: 37–44.

    Google Scholar 

  93. Schuier F, Orzi F, Suda S, Lucignani G, Kennedy C, Sokoloff L. Influence of plasma glucose concentration on lumped constant of the deoxyglucose method: effects of hyperglycemia in the rat.J Cereb Blood Flow Metab 1990; 10: 765–773.

    Google Scholar 

  94. Fischman AJ, Alpert NM. FDG-PET in oncology: there's more to it than looking at pictures.J Nucl Med 1993; 34: 6–11.

    Google Scholar 

  95. Herholz K, Wienhard K, Heiss WD. Validity of PET studies in brain tumors.Cerebrovasc Brain Metab Rev 1990; 2: 240–265.

    Google Scholar 

  96. Schmidt K, Lucignani G, Moresco RM, et al. Errors introduced by tissue heterogeneity in estimation of local cerebral glucose utilization with current kinetic models of the [18F]fluorodeoxyglucose method.J Cereb Blood Flow Metab 1992; 12: 823–834.

    Google Scholar 

  97. Schmidt KC, Lucignani G, Sokoloff L. Fluorine-18-fluorodeoxyglucose PET to determine regional cerebral glucose utilisation: a re-examination.J Nucl Med 1996; 37: 394–399.

    Google Scholar 

  98. Wu HM, Huang SC, Choi Y, Hoh CK, Hawkins RA. A modeling method to improve quantitation of fluorodeoxyglucose uptake in heterogeneous tumor tissue.J Nucl Med 1995; 36: 297–306.

    Google Scholar 

  99. vom Dahl J, Herman WH, Hicks RJ, et al. Myocardial glucose uptake in patients with insulin-dependent diabetes mellitus assessed quantitatively by dynamic positron emission tomography.Circulation 1993; 88: 395–404.

    Google Scholar 

  100. Bradbury MW, Kleeman CR. Stability of the potassium content of cerebrospinal fluid and brain.Am J Physiol 1967; 213: 519–528.

    Google Scholar 

  101. Gjedde A. High- and low-affinity transport of D-glucose from blood to brain.J Neurochem 1981; 36: 1463–1471.

    Google Scholar 

  102. Patlak CS, Blasberg RG. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations.J Cereb Blood Flow Metab 1985; 5: 584–590.

    Google Scholar 

  103. Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data.J Cereb Blood Flow Metab 1983; 3: 1–7.

    Google Scholar 

  104. Wahl RL, Kaminski MS, Ethier SP, Hutchins GD. The potential of 2-deoxy-2[18F]fluoro-d-glucose (FDG) for the detection of tumor involvement in lymph nodes.J Nucl Med 1990; 31: 1831–1835.

    Google Scholar 

  105. Ishizu K, Sadato N, Yonekura Y, et al. Enhanced detection of brain tumors by [18F]fluorodeoxyglucose PET with glucose loading.J Comput Assist Tomogr 1994; 18: 12–15.

    Google Scholar 

  106. Horner HC, Packan DR, Sapoisky RM. Glucocorticoids inhibit glucose transport in cultured hippocampal neurons and glia.Neuroendocrinology 1990; 52: 57–64.

    Google Scholar 

  107. Jarden JO, Dhawan V, Poltorak A, Posner JB, Rottenberg DA. Positron emission tomographic measurement of blood-to-brain and blood-to-tumor transport of82Rb: the effect of dexamethasone and whole-brain radiation therapy.Ann Neurol 1985; 18: 636–646.

    Google Scholar 

  108. Leenders KL, Beaney RP, Brooks DJ, Lammertsma AA, Heather JD, McKenzie CG. Dexamethasone treatment of brain tumor patients: effects on regional cerebral blood flow, blood volume, and oxygen utilization.Neurology 1985; 35: 1610–1616.

    Google Scholar 

  109. Fulham MJ, Brunetti A, Aloj L, Raman R, Dwyer AJ, Di Chiro G. Decreased cerebral glucose metabolism in patients with brain tumors: an effect of corticosteroids.J Neurosurg 1995; 83: 657–664.

    Google Scholar 

  110. Theodore WH, Bairamian D, Newmark ME, et al. Effect of phenytoin on human cerebral glucose metabolism.J Cereb Blood Flow Metab 1986; 6: 315–320.

    Google Scholar 

  111. Theodore WH, DiChiro G, Margolin R, Fishbein D, Porter RJ, Brooks RA. Barbiturates reduce human cerebral glucose metabolism.Neurology 1986; 36: 60–64.

    Google Scholar 

  112. Theodore WH. Antiepileptic drugs and cerebral glucose metabolism.Epilepsia 1988; 29 Suppl 2: S48-S55.

    Google Scholar 

  113. Theodore WH, Bromheld E, Onorati L. The effect of carbamazepine on cerebral glucose metabolism.Ann Neurol 1989; 25: 516–520.

    Google Scholar 

  114. Leiderman DB, Balish M, Bromfield EB, Theodore WH. Effect of valproate on human cerebral glucose metabolism.Epilepsia 1991; 32: 417–422.

    Google Scholar 

  115. Baron JC, Frackowiak RS, Herholz K, et al. Use of PET methods for measurement of cerebral energy metabolism and hemodynamics in cerebrovascular disease.J Cereb Blood Flow Metab 1989; 9: 723–742.

    Google Scholar 

  116. Herholz K, Patlak CS. The influence of tissue heterogeneity on results of fitting nonlinear model equations to regional tracer uptake curves: with an application to compartmental models used in positron emission tomography.J Cereb Blood Flow Metab 1987; 7: 214–229.

    Google Scholar 

  117. Schmidt K, Mies G, Sokoloff L. Model of kinetic behavior of deoxyglucose in heterogeneous tissues in brain: a reinterpretation of the significance of parameters fitted to homogeneous tissue models.J Cereb Blood Flow Metab 1991; 11: 10–24.

    Google Scholar 

  118. Price P, Jones T. Can positron emission tomography (PET) be used to detect subclinical response to cancer therapy? The EC PET Oncology Concerted Action and the EORTC PET Study Group.Eur J Cancer 1995; 31a: 1924–1927.

    Google Scholar 

  119. Nolop KB, Rhodes CG, Brudin LH, et al. Glucose utilization in vivo by human pulmonary neoplasms.Cancer 1987; 60: 2682–2689.

    Google Scholar 

  120. Adler LP, Blair HF, Williams RP, et al. Grading liposarcomas with PET using [18F]FDG.J Comput Assist Tomogr 1990; 14: 960–962.

    Google Scholar 

  121. Kubota K, Matsuzawa T, Fujiwara T, et al. Differential diagnosis of lung tumor with positron emission tomography: a prospective study.J Nucl Med 1990; 31: 1927–1932.

    Google Scholar 

  122. Griffeth LK, Dehdashti F, McGuire AH, et al. PET evaluation of soft-tissue masses with fluorine-18 fluoro-2-deoxy-d-glucose.Radiology 1992; 182: 185–194.

    Google Scholar 

  123. Adler LP, Bloom AD. Positron emission tomography of thyroid masses.Thyroid 1993; 3: 195–200.

    Google Scholar 

  124. Bloom AD, Adler LP, Shuck JM. Determination of malignancy of thyroid nodules with positron emission tomography.Surgery 1993; 114: 728–734.

    Google Scholar 

  125. Gritters LS, Francis IR, Zasadny KR, Wahl RL. Initial assessment of positron emission tomography using 2-fluorine-18-fluoro-2-deoxy-d-glucose in the imaging of malignant melanoma.J Nucl Med 1993: 34: 1420–1427.

    Google Scholar 

  126. Rege SD, Hoh CK, Glaspy JA, et al. Imaging of pulmonary mass lesions with whole-body positron emission tomography and fluorodeoxyglucose.Cancer 1993; 72: 82–90.

    Google Scholar 

  127. Nieweg OE, Kim EE, Wong WH, et al. Positron emission tomography with fluorine-18-deoxyglucose in the detection and staging of breast cancer.Cancer 1993; 71: 3920–3925.

    Google Scholar 

  128. Rege S, Maass A, Chaiken L, et al. Use of positron emission tomography wich fluorodeoxyglucose in patients with extracranial head and neck cancers.Cancer 1994; 73: 3047–3058.

    Google Scholar 

  129. Holthoff VA, Herholz K, Berthold F, et al. In vivo metabolism of childhood posterior fossa tumors and primitive neuroectodermal tumors before and after treatment.Cancer 1993; 72: 1394–1403.

    Google Scholar 

  130. Haberkorn U, Strauss LG, Dimitrakopoulou A, et al. Fluorodeoxyglucose imaging of advanced head and neck cancer after chemotherapy.J Nucl Med 1993; 34: 12–17.

    Google Scholar 

  131. Greven KM, Williams Dr, Keyes JJ, et al. Positron emission tomography of patients with head and neck carcinoma before and after high dose irradiation [see comments].Cancer 1994; 74: 1355–1359.

    Google Scholar 

  132. Kubota K, Yamada K, Yoshioka S, Yamada S, Ito M, Ido T. Differential diagnosis of idiopathic fibrosis from malignant lymphadenopathy with PET and F-18 fluorodeoxyglucose.Clin Nucl Med 1992, 17: 361–363.

    Google Scholar 

  133. Inoue T, Kim EE, Komaki R, et al. Detecting recurrent or residual lung cancer with FDG-PET.J Nucl Med 1995; 36: 788–793.

    Google Scholar 

  134. Di Chiro G. Positron emission tomography using [18F]fluorodeoxyglucose in brain tumors. A powerful diagnostic and prognostic tool.Invest Radiol 1987; 22: 360–371.

    Google Scholar 

  135. Holzer T, Herholz K, Jeske J, Heiss WD. FDG-PET as a prognostic indicator in radiochernotherapy of glioblastoma.J Comput Assist Tomogr 1993; 17: 681–687.

    Google Scholar 

  136. Lapela M, Leskinen S, Minn HR, et al. Increased glucose metabolism in untreated non-Hodgkin's lymphoma: a study with positron emission tomography and fluorine-18-fluorodeoxyglucose.Blood 1995; 86: 3522–3527.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brock, C.S., Meikle, S.R. & Price, P. Does fluorine-18 fluorodeoxyglucose metabolic imaging of tumours benefit oncology?. Eur J Nucl Med 24, 691–705 (1997). https://doi.org/10.1007/BF00841411

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00841411

Key words

Navigation