European Journal of Nuclear Medicine

, Volume 22, Issue 2, pp 177–180 | Cite as

Sequential functional imaging with technetium-99m hexakis-2-meth oxyisobutylisonitrile and indium-111 octreotide: can we predict the response to chemotherapy in small cell lung cancer?

  • J. L. Moretti
  • M. Caglar
  • C. Boaziz
  • N. Caillat-Vigneron
  • J. F. Morere
Case Report

Abstract

A case of small cell lung carcinoma (SCLC) demonstrating uptake on functional indium-111 octreotide scintigraphy is presented. Technetium-99m hexakis-2-methoxyisobutylisonitrile (MIBI) scintigraphy clearly delineated an absence of radionuclide uptake at the tumour site. This suggested the presence of multidrug resistance-mediated P glycoprotein (Pgp) on tumour cells, which recognizes certain chemotherapeutic agents as well as MIBI as a substrate and avoids radionuclide concentration. Following three courses of chemotherapy, the patient failed to improve and eventually died. This case demonstrates the importance of functional images, which have the potential to predict the outcome in response to chemotherapy.

Key words

Technetium-99m hexakis-2-methoxyisobutylisonitrile Indium-111 octreotide Small cell lung cancer Multidrug resistance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gazdar AF, Carney DN, Nau MM, et al. Characterization of variant subclasses of cell lines derived from small cell lung cancer having distinctive biochemical, morphological and growth properties.Cancer Res 1985; 45: 2924.Google Scholar
  2. 2.
    Prevost G, Provost M, Lanson V, et al. A cross linking assay allows the detection of receptors for the somatostatin analogue octreotide in human breast tumour.Eur J Cancer 1993; 29: 1589–1592.Google Scholar
  3. 3.
    Prevost G, Bourgeois Y, Mormont C, et al. Characterization of somatostatin receptors and growth inhibition by somatostatin analogue BIM23014 in small cell lung carcinoma xenograft: SCLC-6.Life Sci 1994; (in press).Google Scholar
  4. 4.
    Krenning EP, Kwekkoboom DJ, Bakker WH, et al. Somatostatin receptor scintigraphy with In-111-DTPA-D-Phe and I-123-Tyr-octreotide: the Rotterdam experience with more than 1000 patients.Eur J Nucl Med 1993; 20: 716–731.Google Scholar
  5. 5.
    Vanhagen PM, Krenning EP, Reubi JC, et al. Somatostatin analogue scintigraphy in granulomatous diseases.Eur J Nucl Med 1994; 21: 497–502.Google Scholar
  6. 6.
    Hoefnagel CA. Metaiodobenzylguanidine and somatostatin in oncology: role in the management of neural crest tumors.Eur J Nucl Med 1994; 21: 561–581.Google Scholar
  7. 7.
    Beller GA, Watson DD. Physiological basis of myocardial perfusion imaging with technetium-99m agents.Semin Nucl Med 1991; 21: 173–181.Google Scholar
  8. 8.
    Muller S, Guth-Tougelides B, Creutzig H. Imaging of malignant tumors with Tc-99m MIBI SPECT.J Nucl Med 1987; 28: 562.Google Scholar
  9. 9.
    Hassan IM, Sahweil A, Constantinides C, et al. Uptake and kinetics of Tc-99m-hexakis 2-methoxy isobutyl isonitrile in benign and malignant lesions of the lungs.Clin Nucl Med 1989; 14: 333–340.Google Scholar
  10. 10.
    Muller SP, Reiners C, Paas M, et al. Tc-99m MIBI Tl-201 uptake in bronchial carcinoma.J Nucl Med 1989; 30: 845.Google Scholar
  11. 11.
    Caner B, Kitapci M, Aras T, et al. Increased accumulation of hexakis (2-methoxy isobutyl isonitrile) technetium (I) in osteosarcoma and its metastatic lymph nodes.J Nucl Med 1991; 32:1977–1978.Google Scholar
  12. 12.
    Caner B, Kitapci M, Erbengi G, et al. Increased accumulation of Tc-99m MIBI in undifferentiated mesenchymal tumor and its metastatic lung lesions.Clin Nucl Med 1992; 17: 144–145.Google Scholar
  13. 13.
    Delmon-Moingeon LI, Piwnica-Worms D, Van den Abbleele AD, et al. Uptake of cation hexakis (2-methoxy isobutyl isonitrile) technetium-99m by human carcinoma cell lines in vitro.Cancer Res 1990; 50: 2198–2202.Google Scholar
  14. 14.
    Piwnica-Worms D, Kronauge JF, Delmon L, et al. Effect of metabolic inhibition on technetium-99m MIBI kinetics in cultured chick myocardial cells.J Nucl Med 1990; 31: 464–472.Google Scholar
  15. 15.
    Ford JM, Hait WN. Pharmacology of drugs that alter multidrug resistance in cancer.Pharmacol Rev 1990; 42: 155–199.Google Scholar
  16. 16.
    Piwnica-Worms D, Chin ML, Budding J, et al. Functional imaging of multidrug-resistant P-glycoprotein with an organotechnetium complex.Cancer Res 1993; 53: 977–984.Google Scholar
  17. 17.
    Ihde DC. Chemotherapy of drug cancer.N Engl J Med 1992; 12: 1434–1441.Google Scholar
  18. 18.
    Morrow CS, Cowan KH. Mechanisms of antineoplastic drug resistance. In: DeVita V, Hellman S, Rosenberg SA, eds.Cancer: principles and practice of oncology. Philadelphia: Lippincott; 1993: 340–348.Google Scholar
  19. 19.
    Deeley RG, Grant CE, Almquist KC, et al. Multidrug resistance mediated by the 190 kDa MRP, a novel member of the ATP-binding cassette transporter superfamily.Proc Am Assoc Cancer Res 1994; 35: 698–699.Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • J. L. Moretti
    • 1
  • M. Caglar
    • 1
  • C. Boaziz
    • 1
  • N. Caillat-Vigneron
    • 1
  • J. F. Morere
    • 1
  1. 1.Hopital Avicenne CHU BobignyUniversite Paris XIIIBobignyFrance

Personalised recommendations