Theoretical and Applied Genetics

, Volume 86, Issue 5, pp 573–578 | Cite as

Taxonomic and population differentiation of mitochondrial diversity inPinus banksiana andPinus conforta

  • J. Dong
  • D. B. Wagner


We have studied two mitochondrial DNA polymorphisms in 741 individuals from 16 allopatric populations ofPinus banksiana Lamb. andPinus contorta Dougl. Restriction fragments of both polymorphisms distinguished the two species qualitatively, except in aP. Banksiana population whose ancestors were involved in hybridization withP. contorta.COXI-associated restriction fragments were monomorphic within species, whileCOXII-associated restriction fragments were highly variable inP. contorta (Hes=0.68). Population differentiation was substantial inP. contorta (Fst=0.31 among subspecies; mean Fst=0.66 within subspecies) and consistent with predictions for maternally inherited markers. Plant mitochondrial markers appear to be useful for the investigation of seed migration routes, hybridization and introgression, breeding zone designation, and the development of germ plasm conservation sampling strategies.

Key words

COXI COXII Maternal inerhitance mtDNA RFLP 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC (1987) Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu Rev Ecol Syst 18:489–522Google Scholar
  2. Birky CW, Jr (1988) Evolution and variation in plant chloroplast and mitochondrial genomes. In: Gottlieb LD, Jain SK (eds) Plant evolutionary biology. Chapman & Hall, London, pp23–53Google Scholar
  3. Clegg MT (1989) Molecular diversity in plant populations. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics, breeding, and genetic resources. Sinauer Assoc, Sunderland, Mass., pp 98–115Google Scholar
  4. Conde MF, Pring DR, Levings CS III (1979) Maternal inheritance of organelle DNAs inZea maysZea perennis reciprocal crosses. J Hered 70:2–4Google Scholar
  5. Critchfield WB (1980) Genetics of lodgepole pine. Research paper WO-37, US Dep Agric, Washington, D.C.Google Scholar
  6. Critchfield WB (1985) The late Quaternary history of lodgepole and jack pines. Can J For Res 15:749–772Google Scholar
  7. Dancik BP, Yeh FC (1983) Allozyme variability and evolution of lodgepole pine (Pinus contorta var ‘latifolia’) and jack pine (P. banksiana) in Alberta. Can J Genet Cytol 25:57–64Google Scholar
  8. Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–13Google Scholar
  9. Glaubitz JC, Carlson JE (1992) RNA editing in the mitochondria of a conifer. Curr Genet 22:163–165Google Scholar
  10. Hamrick JL, Godt MJW (1990) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics, breeding, and genetic resources. Sinauer Assoc, Sunderland, Mass., pp 43–63Google Scholar
  11. Moss EH (1949) Natural pine hybrids in Alberta. Can J Res Sect C 27:218–229Google Scholar
  12. Neale DB, Sederoff RR (1989) Paternal inheritance of chloroplast DNA and maternal inheritance of mitochondrial DNA in loblolly pine. Theor Appl Genet 77:212–216Google Scholar
  13. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590Google Scholar
  14. Palmer JD (1988) Intraspecific variation and multicircularity in Brassica mitochondrial DNAs. Genetics 118:341–351Google Scholar
  15. Palmer JD (1990) Contrasting modes and tempos of genome evolution in land plant organelles. Trends Genet 6:115–120Google Scholar
  16. Petit RJ (1992) Polymorphisme de l'ADN chloroplastique dans un complexe d'especes: les chenes blancs Europeens. Subdivision de la diversité des genes cytoplasmiques chez les plantes. PhD thesis, University of Paris XIGoogle Scholar
  17. Rieseberg LH, Beckstrom-Sternberg S, Doan K (1990)Helianthus annuus ssp.texanus has chloroplast DNA and nuclear ribosomal RNA genes ofHelianthus debilis ssp.cucumerifolms. Proc Natl Acad Sci USA 87:593–597Google Scholar
  18. Rudolph TD, Yeatman CD (1982) Genetics of jack pine. Research paper WO-38, US Dep Agric, Washington, D.C.Google Scholar
  19. Sneath PHA, Sokal RR (1973) Numerical taxonomy: the principles and practice of numerical classification. W.H. Freeman and Co., San FranciscoGoogle Scholar
  20. Strauss SH, Hong Y-P, Hipkins VD (1993) High levels of population differentiation forCOXI-associated mitochondrial DNA haplotypes inPinus radiata, muricata, andattenuata. Theor Appl Genet 86:605–611Google Scholar
  21. Wagner DB, Furnier GR, Saghai-Maroof MA, Williams SM, Dancik BP, Allard RW (1987) Chloroplast DNA polymorphisms in lodgepole and jack pines and their hybrids. Proc Natl Acad Sci USA 84:2097–2100Google Scholar
  22. Wagner DB, Dong J, Carlson MR, Yanchuk AD (1991) Paternal leakage of mitochondrial DNA inPinus. Theor Appl Genet 82:510–514Google Scholar
  23. Weir BS (1990) Genetic data analysis: methods for discrete population genetic data. Sinauer Assoc, Sunderland, Mass.Google Scholar
  24. Westfall RD, Conkle MT (1992) Allozyme markers in breeding zone designation. New For 6:279–309Google Scholar
  25. Wheeler NC, Guries RP (1982) Population structure, genic diversity, and morphological variation inPinus contorta Dougl. Can J For Res 12:595–606Google Scholar
  26. Wheeler NC, Guries RP (1987) A quantitative measure of introgression between lodgepole and jack pines. Can J Bot 65:1876–1885Google Scholar
  27. Whittemore AT, Schaal BA (1991) Interspecific gene flow in sympatric oaks. Proc Natl Acad Sci USA 88:2540–2544Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • J. Dong
    • 1
  • D. B. Wagner
    • 1
  1. 1.Department of ForestryUniversity of KentuckyLexingtonUSA

Personalised recommendations