Theoretical and Applied Genetics

, Volume 86, Issue 5, pp 547–556 | Cite as

Electrophoretic protein analysis for the identification of doubled haploid 1A–1R, 1B–1R wheat-rye double translocation lines and for the assessment of their genetic stability

  • U. Vahl
  • G. Müller
  • T. Böhme
Article

Abstract

Eighteen available doubled haploid wheat lines with a cytologically proven 1A–1R, 1B–1R double translocation, which where derived via anther culture from four crosses of the 1A–1R wheat-rye translocation cv “Amigo” with several 1B–1R wheat-rye translocation forms, were subjected to electrophoretic seed protein analysis. Besides, the five parents used in the crosses and some other wheat cultivars and doubled haploid lines (19 with a 1B–1R single translocation, 10 with a 1A–1R translocation and 7 without any 1R translocation) were also included in the investigation. It was found that the gliadin patterns visualized after SDS polyacrylamide gel electrophoresis of alcohol-soluble seed protein extracts can differentiate not only 1B–1R and 1A–1R translocation forms from wheats without any 1R-translocation chromosome, but also 1B–1R and 1A–1R wheats from each other. Moreover, 1A–1R, 1B–1R double translocation lines can be distinguished as well due to characteristic differences revealed between 1A–1R and 1B–1R translocation forms. Thus, all of tested dh1- and dh2-grains of the double translocation lines showed the expected doublet: the 1A–1R translocation (“Amigo”)-typical rye band and the 1B–1R translocation (“Kawkas”)-typical rye band. Consequently, gliadin patterns estimated after SDS electrophoresis may be used as markers for the fast detection of the desired 1A–1R, 1B–1R double translocation forms among 1A–1R single translocation lines, 1B–1R single translocation lines and lines without any 1R-translocation in the progenies of appropriate crosses. Furthermore, by means of gliadin tests on the dh2-generation the excellent stability of the double translocation 1A–1R, 1B–1R during more than one propagation phase has been proven. Estimations of high-molecular weight (HMW) glutenin subunits coded by 1A and 1B chromosomes are compatible with the double translocation constitution. A few deviating results can be explained by crossing-over events. Seed protein analysis revealed that it is possible to produce 1A–1R, 1B–1R double translocation lines with good glutenin compositions provided that adequate favourable parents are used.

Key words

Gliadin HMW glutenin SDS electrophoresis Biochemical marker 1A-1R, 1B–1R wheatrye double translocation Doubled haploids Triticum aestivum L. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berzonsky WA, Clement RL, Lafever HN (1991) Identification of ‘Amigo’ and ‘Kawkas’ translocations in Ohio soft red wheats (Triticum aestivum L.). Theor Appl Genet 81:629–634Google Scholar
  2. Böhme T (1990) Nutzung der Antherenkultur für die Erzeugung von 1A–1R, 1B–1R-Weizen-Roggen-Doppeltranslokationslinien und deren cytologische Charakterisierung. Mitteilungen Gesellsch Pflanzenbauwissensch, 34 Jahrestagung, Bonn, pp 143–146Google Scholar
  3. Böhme T, Müller G, Vahl U (1991) Zur Einlagerung der 1A–1R-Weizen-Roggen-Resistenz in die Winterweizensorte ‘Ikarus’. Vortr Pflanzenzuecht 19:284–286Google Scholar
  4. Burnouf T, Bouriquet R (1980) Glutenin subunits of genetically related European hexaploid wheat cultivars. Their relation to bread-making quality. Theor Appl Genet 58:107–111Google Scholar
  5. Bushuk W (1989) Glutenin-Struktur und Einfluß des Glutenins auf die Backqualität. Getreide Mehl Brot 9:260–263Google Scholar
  6. Dhaliwal AS, Mares DJ, Marshall DR, Skerritt HJ (1988) Protein composition and pentosan content in relation to dough stickiness of 1B/1R translocation wheats. Cereal Chem 65:143–149Google Scholar
  7. Dhaliwal AS, Mares DJ, Marshall DJ (1990) Measurement of dough surface stickiness associated with 1B/1R chromosome translocation in bread wheats. J Cereal Sci 12:165–167Google Scholar
  8. Friebe B, Heun M, Bushuk W (1989) Cytological characterization, powdery mildew resistance and storage protein composition of tetraploid and hexaploid 1BL-1RS wheat rye translocation lines. Theor Appl Genet 78:425–432Google Scholar
  9. Graybosch RA, Peterson CJ, Hansen LE, Mattern PJ (1990) Relationship between protein solubility characteristics, 1BL-1RS, high-molecular weight glutenin composition, and enduse quality in winter wheat germ plasm. Cereal Chem 67:342–349Google Scholar
  10. Gustafson JP (1988) Evaluation of a 1R (1D) substitution in wheat. In: Miller TE, Koebner MD (eds); Proc 7 Int Wheat Genet Symp. Cambridge, pp 193–196Google Scholar
  11. Heun M, Friebe B, Bushuk W (1990) Chromosomal location of the powdery mildew resistance gene of ‘Amigo’ wheat. Phytopathol 80:1129–1133Google Scholar
  12. Hollenhorst MM, Joppa LR (1983) Chromosomal location of genes for resistance to greenbug in ‘Lago’ and ‘Amigo’ wheats. Crop Sci 23:91–93Google Scholar
  13. Koebner RMD, Shepherd KW (1986) Controlled introgression to wheat of genes from rye chromosome arm 1RS by induction of allosyndesis. Theor Appl Genet 73:197–208Google Scholar
  14. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685Google Scholar
  15. Lookhart GL, Graybosch R, Peterson J, Lukaszewski A (1991) Identification of wheat lines containing the 1BL/1RS translocation by high-performance liquid chromatography. Cereal Chem 68:312–316Google Scholar
  16. Lowry JR, Sammons DJ, Baenziger PS, Moseman JG (1984) Identification and characterization of gene conditioning powdery mildew resistance in ‘Amigo’ wheat. Crop Sci 24:129–132Google Scholar
  17. Lukaszewski AJ (1990) Frequency of 1RS.1AL and 1RS.1BL translocations in United States wheats. Crop Sci 30:1151–1153Google Scholar
  18. Lutz J, Limpert E, Bartos P, Zeller FJ (1992) Identification of powdery mildew resistance genes in common wheat (Triticum aestivum L.) I. Czechoslovakian cultivars. Plant Breed 108:33–39Google Scholar
  19. Mettin D, Blüthner WD (1984) Zur gegenwärtigen Verbreitung des Roggenchromosoms 1R im Weizenzuchtmaterial in der DDR. Tagungsber Akad Landwirtschaftwiss DDR 224:527–534Google Scholar
  20. Mettin D, Blüthner WD, Schlegel G (1973) Additional evidence on spontaneous 1B/1R wheat rye substitutions and translocations. In: Sears ER, Sears LMS (eds) Proc 4 Int Wheat Genet Symp. University of Missouri, Columbia, Mo., pp 179–184Google Scholar
  21. Moonen JHE, Zeven AC (1984) SDS PAGE of the high-molecular-weight subunits of wheat glutenin and the characterization of 1R (1B) substitution and 1BL/1RS translocation lines. Euphytica 33:3–8Google Scholar
  22. Müller G, Vahl U (1986) Vergleich elektrophoretischer Peroxydasemuster von 1A–1R- und 1B–1R-Weizen-Roggen-Translokationsformen. Biochem Physiol Pflanzen 181:425–429Google Scholar
  23. Müller G, Borschel H, Vahl U, Wiberg A, Härtel H, Damisch W (1989 a) Die Nutzung der Antherenkulturmethode im Zuchtprozess von Winterweizen I. Zur Androgenesefähigkeit von 1B–1R-Weizen-Translokationsformen. Plant Breed 102:196–207Google Scholar
  24. Müller G, Vahl U, Wiberg A (1989b) Die Nutzung der Antherenkulturmethode im Zuchtprozeß von Winterweizen II. Die Bereitstellung neuer Winterweizen-dh-Linien mit 1AL-1RS-Translokation. Plant Breed 103:81–87Google Scholar
  25. Müller G, Böhme T, Borschel H, Vahl U, Wiberg A (1990) Die Nutzung der Antherenkulturmethode im Zuchtprozeß von Winterweizen III. Zur Antherenkultureignung von F1-Populationen mit den beiden heterozygoten Chromosomenpaaren 1AL-1AS/1AL-1RS und 1BL-1BS/1BL-1RS. Plant Breed 104:272–280Google Scholar
  26. Müller G, Vahl U, Böhme T, Wiberg A (1992) Die 1AL-1RS-Weizen-Roggen-Translokation der “Neuen Welt” als ein neuer Genpool für mitteleuropäische Weizen. Vortr Pflanzenzuecht 22:323–324Google Scholar
  27. Odenbach W, Mahgoub E (1987) Beziehungen zwischen der Backqualität und dem Vorkommen der Gene für die hochmolekularen Untereinheiten des Glutenins bei den deutschen Winter- und Sommerweizensorten. Getreide Mehl Brot 41:195–198Google Scholar
  28. Payne PI (1986) Varietal improvement in the bread-making quality of wheat: contributions from biochemistry and genetics, and future prospects from molecular biology. In: BCPC Mono No 34: Biotechnology and Crop Improvement and Protection, pp 69–81Google Scholar
  29. Payne PI, Lawrence GJ (1983) Catalogue of alleles for the complex gene loci, Glu-A1, Glu-B1, and Glu-D1 which code for high-molecular-weight subunits of glutenin in hexaploid wheat. Cereal Res Commun 11:29–35Google Scholar
  30. Payne PI, Law CN, Mudd EE (1980) Control by homoeologous group 1 chromosomes of the high-molecular-weight subunits of glutenin, a major protein of wheat endosperm. Theor Appl Genet 58:113–120Google Scholar
  31. Payne PI, Nightingale MA, Krattiger AF, Holt LM (1987) The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties. J Sci Food Agric 40:51–56Google Scholar
  32. Pena RJ, Amaya A, Rajaram S, Mujeeb-Kazi A (1990) Variation in quality characteristics associated with some spring 1B/1R translocation wheats. J Cereal Sci 12:105–112Google Scholar
  33. Petrovich S, Dera AR, Gustafson JP (1988) Rye chromatin variation in Yugoslavian wheats. Plant Breed 100:83–87Google Scholar
  34. Rajaram S, Mann CE, Ortiz-Ferrara G, Mujeeb-Kazi A (1983) Adaption, stability and high yield potential of certain 1B/1R CIMMYT wheats. In: Sakamoto S (ed) Proc 6 Int Wheat Genet Symp. Maruzen, Kyoto, pp 613–621Google Scholar
  35. Rogers WJ, Payne PI, Harinder K (1989) The HMW glutenin subunits and gliadin compositions of German-grown wheat varieties and their relationship with breadmaking quality. Plant Breed 103:89–100Google Scholar
  36. Sebesta EE, Wood EA jr (1978) Transfer of greenbug resistance from rye to wheat with X-rays. Agron Abstr 61–62Google Scholar
  37. Singh NK, Shepherd KW (1988) Linkage mapping of genes controlling endosperm storage proteins in wheat 2. Genes on the long arms of group 1 chromosomes. Theor Appl Genet 75:642–650Google Scholar
  38. Smith EL, Sharma RC, Merkle OG, Sebesta EE, Burton RL, Webster JA, Hunger RM, Abbott DC, Carver BF, Morgan GH (1989) Registration of Century wheat. Crop Sci 29:1093–1094Google Scholar
  39. Vahl U, Müller G (1984) Elektrophoretisch getrennte Primärblatt-Peroxydasen als biochemische Marker in Winterweizenjungpflanzen. Biochem Physiol Pflanz 179:391–402Google Scholar
  40. Vahl U, Müller G (1986) Nutzung elektrophoretisch getrennter Peroxydasen im Zuchtprozess von Winterweizen. Arch Zuechtungsforsch 16:1–10Google Scholar
  41. Villareal RL, Rajaram S, Mujeeb-Kazi A, Del Toro (1991) The effect of chromosome 1B/1R translocation on the yield potential of certain spring wheats (Triticum aestivum L.). Plant Breed 106:77–81Google Scholar
  42. Zeller FJ (1973) 1B/1R wheat-rye chromosome substitutions and translocations. In: Sears ER, Sears LMS (eds) Proc 4 Int Wheat Genet Symp. University of Missouri, Columbia, Mo., pp 209–221Google Scholar
  43. Zeller FJ, Fuchs E (1983) Cytologie und Krankheitsresistenz einer 1A/1R- und mehrerer 1B/1R-Weizen-RoggenTranslokationssorten. Plant Breed 90:285–296Google Scholar
  44. Zeller FJ, Günzel G, Fischbeck G, Gerstenkorn P, Weipert D (1982) Veraenderungen der Backeigenschaften des Weizens durch die Weizen-Roggen-Chromosomentranslokation 1B/ 1R. Getreide Mehl Brot 36:141–143Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • U. Vahl
    • 1
  • G. Müller
    • 1
  • T. Böhme
    • 1
  1. 1.KAI-e.V. Projectgroup Biotechnique Bernburg, Strenzfelder AlleeBernburgGermany

Personalised recommendations