Theoretical and Applied Genetics

, Volume 86, Issue 4, pp 513–517 | Cite as

Selfing rates of pearl millet (Pennisetum typhoides Stapf and Hubb.) under natural conditions

  • M. Sandmeier


The selfing rate of pearl millet (Pennisetum typhoides Stapf and Hubb.) has been determined under natural conditions. This species is said to be allogamous. Nine test plants homozygous for a particular allele on the alcohol dehydrogenase: ADH A locus (A1A1) were sown 2.5 m one from each other interspersed among 300 plants homozygous for the same locus (A2A2); these nine plants served as indicators of selfing. In the 20 spikes produced by these a test plants, the selfing rates varied between 2.2% and 21.7%. Selfmg rates were not significantly different within spikes of the same plant, except for one individual. There was no significant correlation between the rate of selfing and the density of the pollen shadow (estimated from the number of spikes producing pollen during the female phase of test plants) or variation in protogyny.

Key words

Pearl millet Selfing Protogyny Isozymes Natural conditions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brown AHD, Burdon JJ, Jarosz AM (1990) Isozyme analysis of plant mating systems. In: Soltis DE, Soltis PS (eds) Isozymes in plant biology. Chapman and Hall, London, pp 73–86Google Scholar
  2. Burton GW (1974) Factors affecting pollen movement and natural crossing in pearl millet. Crop Sci 14:802–805Google Scholar
  3. Clement J (1985) Les mils pénicillaires de l'Afrique de l'ouest: prospections et collectes. IBPGR-ORSTOM, Rome AbidjanGoogle Scholar
  4. Ferraris R (1973) Pearl millet (P. typhoides). Review series 1/1973. Commonwealth Agricultural Bureaux, Slough, UKGoogle Scholar
  5. Gupta VP, Dhinan KR (1977) Inheritance of protogyny in pearl millet. In: Malik CP (ed) Advance in plant reproductive physiology. Kalyani, New Dehli, pp 161–171Google Scholar
  6. Kahler AL, Gardner CO, Allard RW (1984) Nonrandom mating in experimental populations of maize. Crop Sci 24:350–354Google Scholar
  7. Pollack LM, Gardner CO, Kahler AL, Thomas-Compton M (1984) Further analysis of the mating system in two mass selected populations of maize. Crop Sci 24:793–796Google Scholar
  8. Rao PK, Kunchikoron A, Kusnhamurthy IVG (1949) Natural crossing in cumberPennisetum typhoides. Madras Agric J India 36:526–529Google Scholar
  9. Robert T (1989) Dynamique des flux de gènes entre formes sauvages et cultivées du mil (Pennisetum typhoides Stapf et Hubb.): impact des sélections gamétophytiques. PhD thesis, Orsay University, FranceGoogle Scholar
  10. Robert T, Sarr A, Pernès J (1989) Sélections sur la phase haploïde chez le mil (Pennisetum typhoides (Burm.) Stapf et Hubb.): effet de la température. Génome 32:946–952Google Scholar
  11. Sarr A (1987) Analyse génétique de l'organisation reproductive du mil (Pennisetum typhoides Stapf et Hubb.). Implications pour son amélioration et la gestion des ressources génétiques. PhD thesis, Orsay University, FranceGoogle Scholar
  12. Trigui N, Sandmeier M, Salanoubat M, Pernès J (1985) Utilisation des données enzymatiques et morphologiques pour l'étude des populations et de la domestication des plantes: 1. Séparation et identification génétique d'isozymes chez le mil (P. typhoides). Agronomie 6:779–788Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • M. Sandmeier
    • 1
  1. 1.Laboratory of Plant Evolution and Systematics, URA CNRS 1492, Bâtiment 362, Université de Paris-sudOrsay-cédexFrance

Personalised recommendations