Skip to main content
Log in

Simultaneous emission and transmission measurements as an adjunct to dynamic planar gamma camera studies

  • Short communication
  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Anatomical imaging provides useful information which complements functional imaging performed using a gamma camera. We have previously used transmission measurements in single-photon emission tomography acquired simultaneously with the emission scan using either a plane flood source or a moving line source for attenuation and scatter correction. This approach is equally applicable in planar imaging and provides useful information to assist in detecting patient motion and in defining regions of interest in dynamic studies. We have adapted a moving transmission line source to acquire dynamic geometric mean measurements in the study of the mucociliary clearance of inhaled technetium-99m labelled colloids with a single-headed rotating gamma camera. The line source makes a return pass for each emission acquisition frame (alternating anterior/posterior views), each pass being initiated by a signal from the gamma camera. The result is a dynamic sequence of emission and transmission measurements obtained from a single acquisition. In this application transmission measurements are used to define the lung outline for clearance determination and to check for subject movement throughout the duration of the study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Kuhl DE, Hale J, Eaton WL. Transmission scanning: a useful adjunct to conventional emission scanning for accurately keying isotope deposition to radiographic anatomy. Radiology 1966: 87: 278.

    PubMed  Google Scholar 

  2. Anger HO, McRae J. Transmission scintiphotography. J Nucl Med 1968; 9: 267–269.

    PubMed  Google Scholar 

  3. Sorenson JA, Briggs RC, Cameron JR.99mTc point source for transmission scanning. J Nucl Med 1969; 10: 252–253.

    PubMed  Google Scholar 

  4. Morozumi T, Nakajima M, Ogawa K, Yuta S. Attenuation correction methods using the information of attenuation distribution for single photon emission CT.Med Imag Tech 1984;2: 20–28.

    Google Scholar 

  5. Manglos SH, Jaszczak RJ, Floyd CE, Hahn LJ, Greer KL, Coleman RJ. Nonisotropic attenuation in SPECT: phantom tests of quantitative effects and compensation techniques.J Nucl Med 1987; 28: 1584–1591.

    PubMed  Google Scholar 

  6. Ljungberg M, Strand S-E. Attenuation correction in SPECT based on transmission studies and Monte Carlo simulations of build-up functions.J Nucl Med 1990; 31: 493–500.

    PubMed  Google Scholar 

  7. Mukai T, Links JM, Douglass KH, Wagner HN Jr. Scatter correction in SPECT using non-uniform attenuation data.Phys Med Biol 1988; 33: 1129–1140.

    PubMed  Google Scholar 

  8. Bailey DL, Hutton BF, Meikle SR, Fulton RR, Jackson CB. Iterative scatter correction incorporating attenuation data.Eur J Nucl Med 1989; 15: 452.

    Google Scholar 

  9. Ljungberg M, Strand S-E. Attenuation and scatter correction in SPECT for sources in a nonhomogeneous object: a Monto Carlo study.J Nucl Med 1991; 32: 1278–1284.

    PubMed  Google Scholar 

  10. Meikle SR, Hutton BF, Bailey DL, Fulton RR, Schindhelm K. SPECT scatter correction in non-homogeneous media. In: Colchester ACE, Hawkes DJ, eds.Information processing in medical imaging: XIIth IPMI international conference. Berlin Heidelberg New York: Springer; 1991: 34–44.

    Google Scholar 

  11. Meikle SR, Hutton BF, Bailey DL. A transmission dependent method for scatter correction in SPECT.J Nucl Med 1994; 35: 360–367.

    PubMed  Google Scholar 

  12. Maeda H, Itoh H, Ishii Y, et al. Determination of the pleural edge by gamma-ray transmission computed tomography.J Nucl Med 1981; 22: 815–817.

    PubMed  Google Scholar 

  13. Malko JA, Van Heertum RL, Gullberg GT, Kowalsky WP. SPECT liver imaging using an iterative attenuation correction algorithm and an external flood source.J Nucl Med 1986; 27: 701–705.

    PubMed  Google Scholar 

  14. Manglos SH, Bassano DA, Duxbury CE, Capone RB. Attenuation maps for SPECT determined using cone beam transmission computed tomography.IEEE Trans Nucl Sci 1990; 37: 600–608.

    Google Scholar 

  15. Jaszczak RJ, Gilland DR, Hanson MW, Jang S, Greer KL, Coleman RE. Fast transmission CT for determining attenuation maps using a collimated line source, rotatable air-copperlead attenuators and fan-beam collimation.J Nucl Med 1993; 34: 1577–1586.

    PubMed  Google Scholar 

  16. Murase K, Tanada S, Inoue T, Sugawara Y, Hamamoto K. Improvement of brain single photon emission tomography (SPET) using transmission data acquisition in a four-headed SPET scanner.Eur J Nucl Med 1993; 20: 32–38.

    PubMed  Google Scholar 

  17. Bailey DL, Hutton BF, Walker PJ. Improved SPECT using simultaneous emission and transmission tomography.J Nucl Med 1987; 28: 844–851.

    PubMed  Google Scholar 

  18. Frey EC, Tsui BMW, Perry JR. Simultaneous acquisition of emission and transmission data for improved thallium-201 cardiac SPECT imaging using a technetium-99m transmission source.J Nucl Med 1992; 33: 2238–2245.

    PubMed  Google Scholar 

  19. Gullberg GT, Tung C-H, Zeng GL, Christian PE, Datz FL, Morgan HT. Simultaneous transmission and emission computed tomography using a three-detector SPECT system.J Nucl Med 1992; 33: 901.

    Google Scholar 

  20. Tan P, Bailey DL, Meikle SR, Eberl S, Fulton RR, Hutton BE A scanning line source for simultaneous emission and transmission measurements in SPECT.J Nucl Med 1993, 34: 1752–1760.

    PubMed  Google Scholar 

  21. Tsui BMW, Frey EC, Johnston RE, et al. Design of a collimated scanning line source for fast transmission CT data acquisition [abstract].J Nucl Med 1995; 36: 41P:

  22. Sanchis J, Dolovich M, Rossman C, Wilson W, Newhouse M. Pulmonary mucociliary clearance in cystic fibrosis.N Engl J Med 1973; 288: 651–654.

    PubMed  Google Scholar 

  23. Thompson ML, Pavia D, Short MD, Norman AP. Lung clearance in two patients with cystic fibrosis.N Engl J Med 1973; 289:749–750.

    PubMed  Google Scholar 

  24. Parker JA. Effect of motion on cardiac SPECT imaging [editorial].J Nucl Med 1993; 34: 1355–1356.

    PubMed  Google Scholar 

  25. Geckle WJ, Frank TL, Links JM, Becker LC. Correction for patient and organ movement in SPECT: application to exercise thallium-201 cardiac imaging.J Nucl Med 1988; 29: 441–450.

    PubMed  Google Scholar 

  26. Fulton RR, Hutton BF, Braun M, Ardekani B, Larkin R. Use of 3D reconstruction to correct for patient motion in SPECT.Phys Med Biol 1994; 39: 563–574.

    PubMed  Google Scholar 

  27. Regnis J, Robinson M, Bailey D, et al. Mucociliary clearance in patients with cystic fibrosis and in normal subjects.Am J Respir Crit Care Med 1994; 150: 66–71.

    PubMed  Google Scholar 

  28. Bailey DL, Fulton RR, Jackson CB, Hutton BE, Morris JG. Dynamic geometric mean studies using a single headed rotating gamma camera.J Nucl Med 1989; 30: 1865–1869.

    PubMed  Google Scholar 

  29. Larsson SA. Gamma camera emission tomography. Development and properties of a multi-sectional emission computed tomography system. Acta Radiol Suppl 1980; 363: 17–32.

    Google Scholar 

  30. Hutton BF, Jayasinghe MA, Bailey DL, Fulton RR. Artefact reduction in dual-radionuclide subtraction studies.Phys Med Biol 1987; 32: 477–493.

    PubMed  Google Scholar 

  31. Tothill P, Galt JM. Quantitative profile scannig for the measurement of organ radioactivity.Phys Med Biol 1971; 16: 625–634.

    Google Scholar 

  32. Fleming JS. A technique for the absolute measurement of activity using the gamma camera and computer. Phys Med Biol 1979; 24: 176–180.

    PubMed  Google Scholar 

  33. Macey D, Marshall R. Absolute quantitation of radiotracer uptake in lungs using a gamma camera.J Nucl Med 1984; 23: 731–735.

    Google Scholar 

  34. Collins PJ, Horowitz M, Shearman DJC, Chatterton BE. Correction for tissue attenuation in radionuclide gastric emptying studies: a comparison of a lateral and a geometric mean method.Br J Radiol 1984; 57: 689–695.

    PubMed  Google Scholar 

  35. Woods RP, Cherry SR, Mazziotta JC. Rapid automated algorithm for aligning and reslicing PET images.J Comput Assist Tomogr 1992; 16: 620–633.

    PubMed  Google Scholar 

  36. Dolovich MB, Sanchis J, Rossman C, Newhouse MT. Aerosol penetrance: a sensitive index of peripheral airways obstruction.J Appl Physiol 1976; 40: 468–471.

    PubMed  Google Scholar 

  37. DeNardo GL, DeNardo SJ. The lungs. In: Freeman LM, ed.Freeman and Johnson's clinical radionuclide imaging, 3rd edn. 1051–1139.

  38. Agnew JE, Pavia D, Clarke SW. Airways penetration of inhaled radioaerosols: an index of small airways function?Eur J Respir Dis 1981; 62: 239–255.

    PubMed  Google Scholar 

  39. Phipps PR, Gonda I, Bailey DL, Borham PW, Bautovich GJ, Anderson SD. Comparison of planar and tomographic scintigraphy to measure the penetration index of inhaled aerosols.Am Rev Respir Dis 1989; 239: 1516–1523.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bailey, D.L., Robinson, M., Meikle, S.R. et al. Simultaneous emission and transmission measurements as an adjunct to dynamic planar gamma camera studies. Eur J Nucl Med 23, 326–331 (1996). https://doi.org/10.1007/BF00837632

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00837632

Key words

Navigation