Skip to main content
Log in

Problem of developing algorithms for computation of the carbon potential of furnace atmospheres

  • Thermochemical Treatment
  • Published:
Metal Science and Heat Treatment Aims and scope

Conclusions

  1. 1.

    Mathematical models reflecting the interrelationship between carbon potential and the gas parameters and temperature of a furnace atmosphere are developed.

  2. 2.

    The error of a model in the form log ϕ aC =f(%CO; %CO2; t; n) does not exceed ±0.02% C in practical ranges of furnace-atmosphere parameters.

  3. 3.

    The models that we developed make it possible to create comparatively simple algorithms to compute the carbon potential for specialized and universal computer units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. H. Schenk and H. Kaiser, Archiv Eisenhutten., No. 31, 227 (1960).

    Google Scholar 

  2. B. M. Tomilin, I. A. Mogutnov, and L. A. Shvartsman, Thermodynamics of Carbon-Iron Alloys [in Russian], Metallurgiya, Moscow (1972).

    Google Scholar 

  3. T. Ellis, M. Davidson, and C. Botworth, "Some thermodynamics properties of carbon in austenite," J. Iron Steel Inst.201, 582 (1963).

    Google Scholar 

  4. T. Sobusiak, "Wlyw sklado shemicznego atmosfer na ich wlasnosci naweglajace," Metaloznawstwo Obrobka Sieplna, No. 16 (1975).

  5. I. Wunning, Offenlegungsschrift, 1673 308 (June 16, 1971).

    Google Scholar 

  6. F. Neumann and U. Wyss, "Aufkohlungsvirkung von gasegemischen in sistem H2/CH4/H2O-CO/CO2-N2," Herterei-Techn. Mitt., No. 4, 235–265 (1970).

    Google Scholar 

  7. I. Wunning, "Gasaufkohlungsverfaren," Aichelin Industrie-Offenbau. Haufe-Verlag, No. 20/4 (1969).

  8. N. M. Buslovich, É. Ya. Makhtinger, and L. A. Mikhailov, "Scientific bases for the design of electric gas-carburizing furnaces," in: Proceedings of the All-Union Scientific-Research Institute of Experimental Heat Treatment [in Russian], Energiya, Moscow (1979).

    Google Scholar 

  9. F. D. Richardson and I. H. Jeffes, J. Iron Steel Inst.,160, 261 (1948).

    Google Scholar 

  10. E. Kasprzycka, "Tablice ctalych rownowagi chemiczenej wytranych reakcij w atmosferach gazowych stosowanych w obrobke cieplno-chemieznej," Metaloznawstwo i Obrobka Sieplna, No. 12 (1974).

  11. B. A. Moiseev, Yu. M. Brunzel', and A. A. Shvartsman, "Thermodynamic activity of carbon during restoration carburizing," Metalloved. Term. Obrab. Met., No. 1, 21–26 (1974).

    Google Scholar 

  12. V. L. Melshkin, E. Ya. Surman, and A. A. Brakhman, "Digital program control of a furnace chamber complex for case-hardening," Avtomobil. Prom., No. 6 (1984).

  13. V. L. Meleshkin, "On the use of oxygen-potential regulators in case-hardening practice," Tekh. Avtomobilestr., No. 10 (1981).

  14. V. L. Meleshkin and V. M. Zinchenko, "Automatic regulation of the carbon potential in furnace atmospheres," Metalloved. Term. Obrab. Met., No. 8, 64–67 (1978).

    Google Scholar 

Download references

Authors

Additional information

Scientific-Research Institute for Automation of Manufacturing Processes in Industry. Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 6, pp. 6–11, June, 1986.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meleshkin, V.L. Problem of developing algorithms for computation of the carbon potential of furnace atmospheres. Met Sci Heat Treat 28, 388–393 (1986). https://doi.org/10.1007/BF00836882

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00836882

Keywords

Navigation