Journal of engineering physics

, Volume 41, Issue 2, pp 827–831 | Cite as

Macrokinetics of surface reactions in a liquid or gas flow and an approximate method of calculating the mass-transfer rate of the reacting particles

  • Yu. P. Gupalo
  • A. D. Polyanin
  • Yu. S. Ryazantsev
  • Yu. A. Sergeev
Article
  • 18 Downloads

Abstract

A simple approximate formula is proposed for calculating the mass-transfer coefficient for a moving reactive particle, the surface of which is the site of a heterogeneous chemical reaction with arbitrary kinetics.

Keywords

Statistical Physic Surface Reaction Approximate Method Heterogeneous Chemical Reaction Approximate Formula 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics, Plenum Publ. (1969).Google Scholar
  2. 2.
    V. G. Levich, Physicochemical Hydrodynamics, Prentice-Hall (1962).Google Scholar
  3. 3.
    B. I. Brounshtein and G. A. Fishbein, Hydrodynamics of Mass and Heat Transfer in Disperse Systems [in Russian], Khimiya, Leningrad (1977).Google Scholar
  4. 4.
    P. L. Chambre and A. Acrivos, “On chemical surface reaction in laminar boundary layer flows,” J. Appl. Phys.,27, No. 11, 1322–1328 (1956).Google Scholar
  5. 5.
    A. Acrivos and P. L. Chambre, “Laminar boundary layer flows with surface reactions,” Ind. Eng. Chem. Fundam.,49, No. 6, 1025–1029 (1957).Google Scholar
  6. 6.
    Yu. P. Gupalo and Yu. S. Ryazantsev, “On mass and heat transfer of a spherical particle in a laminar flow of a viscous fluid,” Prikl. Mat. Mekh.,35, No. 2, 255–265 (1971).Google Scholar
  7. 7.
    Yu. P. Gupalo, Yu. S. Ryazantsev, and Yu. N. Syskov, “Diffusion toward a reacting particle of arbitrary form immersed in a flow,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 2, 99–106 (1975).Google Scholar
  8. 8.
    Yu. P. Gupalo, A. D. Polyanin, Yu. S. Ryazantsev, and Yu. A. Sergeev, “Convective diffusion toward a solid particle in a gas flow in the presence of a heterogeneous chemical reaction with nonlinear kinetics,” Dokl. Akad. Nauk SSSR,237, No. 1, 86–89 (1977).Google Scholar
  9. 9.
    Yu. P. Gupalo, A. D. Polyanin, Yu. S. Ryazantsev, and Yu. A. Sergeev, “Convective diffusion toward a particle with nonlinear kinetics in the case of three-dimensional flow of a viscous fluid about the particle,” Dokl. Akad. Nauk SSSR,245, No. 3, 547–550 (1979).Google Scholar
  10. 10.
    A. D. Polyanin and Yu. A. Sergeev, “Convective diffusion toward a particle in a liquid with nonlinear kinetics,” Prikl. Mat. Mekh.,43, No. 1, 65–74 (1979).Google Scholar
  11. 11.
    A. D. Polyanin and Yu. A. Sergeev, “On diffusion toward an absorbing particle with mixed kinetics,” Prikl. Mat. Mekh.,41, No. 4, 667–677 (1977).Google Scholar
  12. 12.
    Yu, P. Gupalo, A. D. Polyanin, Yu. S. Ryazantsev, and Yu. A. Sergeev, “Convective diffusion toward a drop with arbitrary absorption conditions. Approximation of the diffusion boundary layer,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 6, 64–69 (1979).Google Scholar
  13. 13.
    A. Acrivos and T. D. Taylor, “Heat and mass transfer from a single sphere in Stokes flow,” Phys. Fluids,5, No. 3, 387–394 (1962).Google Scholar
  14. 14.
    B. B. Brandt and V. V. Dil'man, “Kinetics of dissolution of solids in a laminar flow at high Reynolds and Prandtl numbers,” Teor. Osn. Khim. Tekhnol.,9, No. 5, 765–767 (1975).Google Scholar
  15. 15.
    T. D. Taylor, “Mass transfer from single sphere in Stokes flow with surface reactions,” Int. J. Heat Mass Transfer,6, No. 11, 993–994 (1963).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • Yu. P. Gupalo
    • 1
  • A. D. Polyanin
    • 1
  • Yu. S. Ryazantsev
    • 1
  • Yu. A. Sergeev
    • 1
  1. 1.Institute of Problems of MechanicsAcademy of Sciences of the USSRMoscow

Personalised recommendations