Skip to main content
Log in

Mehrphasige Finite Elemente in der Verformungs- und Versagensanalyse grob mehrphasiger Werkstoffe

  • Originals
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Übersicht

Zur Simulation des elastoplastischen Verformungsverhaltens und von Versagensprozessen in grob mehrphasigen Materialien verwenden wir die Methode der Mehrphasigen Finiten Elemente. Der Verzicht auf die ausschließliche Verwendung einphasiger Finiter Elemente gestattet die spannungs-/Dehnungsanalyse an komplizierten Realgefügen. Die vorgestellten Beispiele für Verformungs- und Versagensanalysen stellen die Leistungsfähigkeit der Methode der Mehrphasigen Finiten Elemente hinsichtlich Modellieraufwand, Konvergenz und Zuverlässigkeit der Resultate unter Beweis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Fischmeister, H. F.; Karlsson, B.: Plastizitätseigenschaften grob-zweiphasiger Werkstoffe. Z. Metallk. 68 (1977) 311–327

    Google Scholar 

  2. Steinkopff, T.; Sautter, M.: Simulating the elasto-plastic behavior of multiphase materials by advanced finite element techniques. (accepted for publication in Comp. Mater. Sci.)

  3. Brockenbrough, J. R.; Suresh, S.; Wienecke, H. A.: Deformation of metal-matrix composites with continuous fibers: geometrical effects of fiber distribution and shape. Acta Metal. Mater. 39 (1991) 735–752

    Google Scholar 

  4. Zahl, D. B.; McMeeking, R. M.: The influence of residual stress on the yielding of metal matrix composites. Acta Metall. Mater. 39 (1991) 1117–1122

    Google Scholar 

  5. Bao, G.; Hutchinson, J. W.; McMeeking, R. M.: Particle reinforcement of ductile matrices against plastic flow and creep. Acta Metall. Mater. 39 (1991) 1871–1882

    Google Scholar 

  6. Nakamura, T.; Suresh, S.: Effects of thermal residual stresses and fiber packing on deformation of metal-matrix composites. Brown University Report N00014-92-J-1360/1/92

  7. Dietrich, C.; Poech, M. H.; Fischmeister H. F.; Schmaunder, S.: Stress and strain partitioning in a Ag−Ni fiber composite. Comput. Mater. Sci. 1 (1993) 195–202

    Google Scholar 

  8. Poech, M. H.; Fischmeister, H. F., Kaute, D.; Spiegler, R.: FE-modelling of the deformation behaviour of WC-Co alloys. Comput. Mater. Sci. 1 (1993) 213–224

    Google Scholar 

  9. Sautter, M., Dietrich, C.; Poech, M. H.; Schmauder, S.; Fischmeister, H. F.: Finite element modeling of a transverse-loaded fibre composite. Effects of section size and net density. Comput. Mater. Sci. 1 (1993) 225–233

    Google Scholar 

  10. Steinkopff, T.: Multiphase element method. In: Third Workshop on Computational Modelling of the Mechanical Behaviour of Materials, Stuttgart, Germany, 1993

  11. Poech, M. H.; Fischmeister, H. F.: Deformation of two-phase materials: A model based on strain compatibility. Acta Metall. Mater. 40 (1992) 487–494

    Google Scholar 

  12. Steinkopff, T.: Rezoning scheme for the simulation of discrete void formation in coarse two-phase materials. Comput. Mater. Sci. 1 (1993) 289–296

    Google Scholar 

  13. Chu C. C.; Needleman, A.: Void nucleation effects in biaxially stretched sheets. J. Eng. Fract. Mech. 102 (1980) 249–256

    Google Scholar 

  14. Thomson R. D.; Hancock, J. W.; Ductile failure by void nucleation, growth and coalescence. Int. J. Fract. 26 (1984) 99–112

    Google Scholar 

  15. Goods, S. H.; Brown, L. M. The nucleation of catities by plastic deformation. Acta Metall. Mater. 27 (1979) 1–15

    Google Scholar 

  16. Aravas, N.; McMeeking, R. M.: Microvoid growth and failure in the ligament between a hole and a blunt crack tip. Int. J. Fract. 29 (1985) 21–38

    Google Scholar 

  17. Tvergaard, V.: Anumerical analysis of 3D localization failure by a void-sheet mechanism. Eng. Fract. Mech. 41 (1992) 787–803

    Google Scholar 

  18. Swenson, D. V.; Ingraffea, A. R.: Modeling mixed-mode dynamic crack propagation using finite elements: Theory and applications. Comp. Mech. 3 (1988) 381–397

    Google Scholar 

  19. Wulf, J.; Schmauder, S.; Fischmeister, H. F.: Finite element modelling of crack propagation in ductile fracture. Comput. Mater. Sci. 1 (1993) 297–301

    Google Scholar 

  20. Steinkopff, T.; Sautter, M.: Finite-element modelling large deformations of multiphase materials. (in preparation)

  21. LASSO: Ingenieurgesellschaft, Markomannenstr. 11, D-70771 Leinfelden-Echterdingen, Germany

  22. Wulf, J.; Schmauder, S.; Fischmeister, H. F.: Simulation of experimental force-displacement curves by a finite element technique. Comp. Mater. Sci. 3 (1994) 300–306

    Google Scholar 

  23. Wulf, J.: Steinkopff, T.; Fischmeister, H. F.: Finite element modelling of ductile failure using an automatic element elimination technique and multiphase elements. In: Third Int. Conf. on Localized Damage, Udine, Italy, 1994

  24. Lewis, R.; Huang, H.; Usmani, A.; Tadayon, M.: Solidification in castings by finite element method. Mater. Sci. Technol. 6 (1990) 482–489

    Google Scholar 

  25. Chandrasekar, S.; Wang, S.; Yang, H.: An efficient 2-D finite element procedure for isothermal phase changes. Trans. ASME 112 (1990) 352–360

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinkopff, T., Sautter, M. & Wulf, J. Mehrphasige Finite Elemente in der Verformungs- und Versagensanalyse grob mehrphasiger Werkstoffe. Arch. Appl. Mech. 65, 496–506 (1995). https://doi.org/10.1007/BF00835664

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00835664

Key words

Navigation