Skip to main content
Log in

An axisymmetrical quasi-Kirchhoff-type shell element for large plastic deformations

  • Originals
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Summary

An axisymmetrical shell element for large plastic strains is developed. The theory is based on the multiplicative decomposition of the material deformation gradient into an elastic and a plastic part. For quasi-Kirchhoff-type axisymmetric shells this leads to a product of the elastic and plastic stretches. By introduction of logarithmic strains the decomposition becomes additive. Plastic incompressibility is fulfilled in an exact manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eberlein, R.;Wriggers, P.;Taylor, R. L.: A fully non-linear axisymmetrical quasi-Kirchhoff-type shell element for rubber-like materials. Int. J. Num. Meth. Eng. 36 (1993) 4027–4043

    Google Scholar 

  2. Eterovic, A. L.;Bathe, K. L.: A hyperelastic-based large strain elasto-plastic constitutive formulation with combined isotropic-kinematic hardening using logarithmic stresses and strain measures. Int. J. Num. Meth. Eng. 30 (1990) 1099–1115

    Google Scholar 

  3. Gruttmann, F.;Stein, E.: Tangentiale Steifigkeitsmatrizen bei Anwendung von Projektionsverfahren in der Elastoplastizitätstheorie. Ing. Arch. 58 (1988) 15–24

    Google Scholar 

  4. Hill, R.: The mathematical theory of plasticity. Oxford: University Press 1950

    Google Scholar 

  5. Hill, R.: Constitutive inequalities for isotropic elastic solids under finite strain. Proc. R. Soc. London A 314 (1970) 457–472

    Google Scholar 

  6. Hoger, A.: The stress conjugate to logarithmic strain. Int. J. Solids Struct. 23 (1987) 1645–1656

    Google Scholar 

  7. Lee, E. H.;Liu, D. T.: Finite-strain elastic-plastic theory with application to plane-wave analysis. J. Appl. Phys. 38 (1967) 19–27

    Google Scholar 

  8. Lubliner, J.: A maximum-dissipation principle in generalized plasticity. Acta Mechanica 52 (1984) 225–237

    Google Scholar 

  9. Lubliner, J.: Normality rules in large-deformation plasticity. Mech. Mater. 5 (1986) 29–34

    Google Scholar 

  10. Mattiasson, K.; Bernspång, L.; Samuelsson, A.; Hamman, T.; Schedin, E.; Melander, A.: Evaluation of a dynamic approach using explicit integration in 3-D sheet forming simulation. In: Chenot, J. L.; Wood, R. D.; Zienkiewicz, O. C. (eds.) Proc. NUMIFORM '92 Conf. 1992

  11. Massoni, E.;Chenot, J. L.;Bellet, M.: A 3-D finite element approach for predicting the deformation of an anisotropic elasto-plastic membrane. In: Wriggers, P.; Wanger, W. (eds.) Nonlinear Computational Mechanics. Berlin: Springer 1991

    Google Scholar 

  12. Peric, D.; Owen, D. R. J.; Honnor, M. E.: A model for finite strain plasticity. In: Owen, R.; Hinton, E.; Onate, E. (eds.) Proc. 2nd Int. Conf. on Computational Plasticity, Pineridge, Swansea, 1989, pp. 111–126

  13. Saran, M. J.;Schedin, E.;Samuelsson, A.;Melander, A.;Gustafsson, C.: Numerical and experimental investigations of deep drawing of metal sheets. J. Eng. Ind. ASME, 112 (1990) 272–277

    Google Scholar 

  14. Simo, J. C.;Taylor, R. L.: A return mapping algorithm for plane stress elastoplasticity. Int. J. Num. Meth. Eng. 22 (1986) 649–670

    Google Scholar 

  15. Simo, J. C.: A framework for finite elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Part I. Continuum formulation. Comp. Meth. Appl. Mech. Eng. 66 (1988) 199–219

    Google Scholar 

  16. Simo, J. C.;Taylor, R. L.;Wriggers, P.: A note on finite-element implementation of pressure boundary loading. Comm. Appl. Num. Meth. 7 (1991) 513–525

    Google Scholar 

  17. Simo, J. C.: Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesinal theory. Comp. Meth. Appl. Mech. Eng. 99 (1992) 61–112

    Google Scholar 

  18. Wagner, W.: A finite element model for non-linear shells of revolution with finite rotations. Int. J. Num. Meth. Eng. 29 (1990) 1455–1471

    Google Scholar 

  19. Weber, G.;Anand, L.: Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscoplastic solids. Comp. Meth. Appl. Mech. Eng. 79 (1990) 173–202

    Google Scholar 

  20. Wriggers, P.;Miehe, C.: Contact constraints within coupled thermomechanical analysis-A finite element model. Comp. Meth. Appl. Mech. Eng. 113 (1994) 301–319

    Google Scholar 

  21. Wriggers, P.;Simo, J. C.: A note on tangent stiffnesses for fully nonlinear contact problems. Comm. Appl. Num. Meth. 1 (1985) 199–203

    Google Scholar 

  22. Zienkiewicz, O. C.;Taylor, R. L.: The Finite Element Method, Vol. 1. London: McGraw Hill 1988

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Support for this work was provided by the Deutsche Forschungsgemeinschaft (DFG) under contract Wr 19/7-1. The financial aid for the first and second author is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wriggers, P., Eberlein, R. & Gruttmann, F. An axisymmetrical quasi-Kirchhoff-type shell element for large plastic deformations. Arch. Appl. Mech. 65, 465–477 (1995). https://doi.org/10.1007/BF00835659

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00835659

Key words

Navigation