Journal of engineering physics

, Volume 42, Issue 6, pp 642–647 | Cite as

Transfer properties of Freon-22 vapor

  • O. B. Tsvetkov


Experimental data on heat conduction are discussed from the point of view of their analysis together with other transfer coefficients to obtain more reliable information.


Experimental Data Statistical Physic Transfer Coefficient Heat Conduction Reliable Information 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    O. B. Tsvetkov and Yu. A. Laptev, “An experimental installation for investigating the thermal conductivity of gases by the hot-filament method,” Izy, Vyssh. Uchebn. Zaved., Priborostr.,18, No. 8, 127–130 (1975).Google Scholar
  2. 2.
    O. B. Tsvetkov and Yu. A. Laptev, “Use of the hot-filament method to investigate the thermal conductivity of gaseous Freons,” in: Machines and Apparatus of Refrigeration and Cryogenic Engineering and Air Conditioning [in Russian], Leningr. Tekhn. Inst. im. Lensoveta, Leningrad (1976), No. 1, pp. 167–169.Google Scholar
  3. 3.
    N. B. Vargaftik, L. P. Filippov, A. A. Tarzimanov, and R. P. Yurchak, Thermal Conductivity of Liquids and Gases [in Russian], Stnadartov, Moscow (1970).Google Scholar
  4. 4.
    L. I. Cherneeva, “Thermal conductivity of Freon-22,” Kholod. Tekh., No. 3, 60–63 (1953).Google Scholar
  5. 5.
    W. H. Markwood and A. F. Benning, “Thermal conductances and heat transmission coefficients of freon refrigerants,” Refrig. Eng.,45, No. 2, 95–99 (1943).Google Scholar
  6. 6.
    B. Z. Geller, “Thermal conductivities of some Freons of the methane series,” Teplofiz. Svoistva Veshchestv Mater., No. 8, 162–176 (1975).Google Scholar
  7. 7.
    V. A. Gruzdev, A. I. Shestova, and V. V. Selin, “Thermal conductivity of Freons,” in: Thermophysical Properties of Freons [in Russian], Novosibirsk (1969), pp. 62–74.Google Scholar
  8. 8.
    V. A. Gruzdev and A. I. Shestova, “An experimental investigation of the thermal conductivity of Freons-11, 12, 13, 21, 22, and 23,” in: The Use of Freons in Power Plants [in Russian], Novosibirsk (1974), pp. 145–180.Google Scholar
  9. 9.
    A. P. Masia, A. Bracero, and B. J. Rienda, “Variation de la conductlvidad calorifica con la pression on ocho derivados halogenados del metan,” An. R. Soc. Esp. Fiz. Quim., Ser. A, Nos. 1–2, 89–100 (1964).Google Scholar
  10. 10.
    A. B. Donaldson, “On the estimation of thermal conductivity of organic vapours. Data for some Freons,” Ind. Eng. Chem., Fundam.,14, 325–328 (1975).Google Scholar
  11. 11.
    V. V. Altunin, “The use of a new method of treatment of measurements for the generalization of experimental data on the viscosity of Freon-22,” Teplofiz. Svoistva Veshchestv Mater., No. 8, 130–141 (1975).Google Scholar
  12. 12.
    J. Kestin and W. A. Wakeham, “Viscosity of three polar gases,” Ber. Bunsenges. Phys. Chem.,83, No. 4, 573–576 (1979).Google Scholar
  13. 13.
    B. Latto, “Viscosity of R12, R13, R13B1, R22, and R500 in the vapor phase,” in: Proceedings of the Seventh Symposium on Thermophysical Properties, ASME, N.Y. (1977), pp. 705–711.Google Scholar
  14. 14.
    V. Z. Geller, “Viscosities of Freons of the methane, ethane, and propane series. Generalization of experimental data,” Teplofiz. Svoistva Veshchestv Mater., No. 15, 89–114 (1980).Google Scholar
  15. 15.
    R. K. Nikul'shin and E. F. Petriman, “Intermoleuclar potentials and viscosity of Freons,” Zh. Fiz. Khim.,50, No. 6, 1408–1411 (1976).Google Scholar
  16. 16.
    O. B. Tsvetkov, “A model of generalized kinetic characteristics,” Informational Leaflet No. 1307–80, Leningr. Mekh. Tekh. Tsent. Nauchn. Tekh. Inform., and P-4Q (1980).Google Scholar
  17. 17.
    W. Bahro, “Die Molwarme der Fluor-chlor-derivate des Methanes in Zustand idealer Gase,” Kaeltetechnik,17, No. 7, 219–223 (1965).Google Scholar
  18. 18.
    J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, The Molecular Theory of Gases and Liquids, Wiley, N.Y. (1954).Google Scholar
  19. 19.
    E. A. Mason and L. Monchick, “Heat conductivity of polyatomic and polar gases,” J, Chem. Phys.,36, No. 6, 1622–1639 (1962).Google Scholar
  20. 20.
    V. V. Altunin, Thermophysical Properties of Carbon Dioxide [in Russian], Standartov, Moscow (1975).Google Scholar
  21. 21.
    R. Afshar, A. Alimadadian, and S. C. Saxena, “Thermal conductivity of sulfur dioxide and thermal accommodation coefficient for sulfur dioxide on a gas-covered platinum surface as a function of temperature,” High Temp. Sci.,11, No. 5, 79–83 (1979).Google Scholar
  22. 22.
    N. F. Sather and J. S. Dahler, “Molecular friction in dilute gases. III, Rotational relaxation in polyatomic fluids,” J. Chem. Phys.,37, No. 9, 1947–1951 (1962).Google Scholar
  23. 23.
    C. A. Brau and R. M. Jonkman, “Classical theory of rotational relaxation in diatomic gases,” J. Chem. Phys.,52, No. 2, 477–484 (1970).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • O. B. Tsvetkov
    • 1
  1. 1.Leningrad Technological Institute of the Refrigeration IndustryUSSR

Personalised recommendations