Bulletin of Experimental Biology and Medicine

, Volume 80, Issue 4, pp 1227–1230 | Cite as

Correlation between cytotoxic lymphocytes and cells synthesizing macrophage migration inhibition factor in the H-2 system

  • A. P. Suslov
  • S. G. Egorova
  • B. D. Brondz
Microbiology and Immunology
  • 15 Downloads

Abstract

The high immunologic specificity of direct and indirect macrophage migration inhibition tests in the H-2 system was demonstrated. The ability of immune lymphocytes to produce migration inhibition factor (MIF) was revealed by their incubation with mouse cells of congeneic and recombinant strains containing the separate components of the immunizing complex — both partial and total H-2 specificities. Removal of the cytotoxic lymphocytes by adsorption on the corresponding target cells did not reduce the ability of the remaining cell population to produce MIF. Some of the lymphocytes producing MIF were attached to target cells and could be eluted simultaneously with the cytotoxic lymphocytes. It is postulated that the populations of T cells which synthesize MIF and which destroy target cells differ in the structure of their receptors.

Key Word

cytotoxic effect inhibition of macrophage migration H-2 system partial and total specificities 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    B. D. Brondz, Folia Biol. (Prague),14, 115 (1968).Google Scholar
  2. 2.
    B. D. Brondz and A. E. Snegireva, Immunology,20, 457 (1971).Google Scholar
  3. 3.
    B. D. Brondz and I. K. Egorov, Byull. Éksperim. Biol. Med., No. 6, 69 (1974).Google Scholar
  4. 4.
    B. D. Brondz, I. K. Egorov, and G. I. Drizlikh, J. Exp. Med.,141, 11 (1975).Google Scholar
  5. 5.
    S. G. Egorova, A. P. Suslov, and B. D. Brondz, in: Proceedings of an All-Union Conference on General and Applied Immunology [in Russian], Part 1, Moscow (1974), pp. 54–55.Google Scholar
  6. 6.
    A. A. Vedernikov and I. K. Egorov, Genetika, No. 2, 60 (1973).Google Scholar
  7. 7.
    S. Al-Askary, J. R. David, H. S. Lawrence, et al., Nature,205, 916 (1965).Google Scholar
  8. 8.
    B. R. Bloom, Adv. Immunol.,13, 101 (1971).Google Scholar
  9. 9.
    B. R. Bloom, J. Caffney, and L. Jiminez, J. Immunol.,109, 1395 (1972).Google Scholar
  10. 10.
    H. Cantor and R. Asofski, J. Exp. Med.,135, 764 (1972).Google Scholar
  11. 11.
    B. A. Clinton, T. J. Magoc, and R. L. Aspinall, J. Immunol.,112, 1741 (1974).Google Scholar
  12. 12.
    P. Demant, Transplant. Rev.,15, 162 (1973).Google Scholar
  13. 13.
    H. Friedman, Transplantation,11, 288 (1971).Google Scholar
  14. 14.
    R. M. Gorczynski, J. Immunol.,112, 1815 (1974).Google Scholar
  15. 15.
    D. Hughes, J. Immunol. Meth.,1, 403 (1972).Google Scholar
  16. 16.
    B. Perren, G. Schumann, R. H. Gisler, et al., Transplantation,17, 392 (1974).Google Scholar
  17. 17.
    R. E. Rocklin, J. Immunol.,110, 674 (1973).Google Scholar
  18. 18.
    S. D. Stobo, W. E. Paul, and C. S. Henney, J. Immunol.,110, 652 (1973).Google Scholar
  19. 19.
    W. Tittor and R. L. Walford, Nature,247, 371 (1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • A. P. Suslov
  • S. G. Egorova
  • B. D. Brondz

There are no affiliations available

Personalised recommendations