Skip to main content

Advertisement

Log in

Where have we got to with neuroreceptor mapping of the human brain?

  • Review Article
  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

In the past two decades, tritiated radioligand receptor binding, a tool commonly used to investigate the site of action of drugs in laboratory animals, has provided a vast body of information on neuropharmacology and neurobiology. Several neurological and psychiatric diseases have been related to neurotransmitter and receptor disorders. In order to study ligand interactions with receptors in vivo in humans, new tracers capable of carrying aγ-emitting radionuclide to the receptor have been designed. Emission computerized tomography (ECT) techniques such as positron (PET) or single photon emission tomography (SPET) allow monitoring of the time-course of regional tissue concentration of these radiolabelled ligands. PET and SPET each have their inherent advantages and drawbacks. The cyclotron-based technology of PET is a demanding and expensive technique that, to date, is still mainly reserved for research purposes. It is hoped that once the scientific basis of a physiopathological study is established using PET, diagnostic information might be provided by the more readily available SPET technology. The purpose of this article is to review the current state of receptor-bindingγ-emitting radioligands and to present the clinical potential of these new kinds of radiopharmaceuticals in clinical investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam MJ, Zea Ponce Y, Berry JM, Hoy K (1990) Synthesis and preliminary evaluation of L-[123I]iododopa as a potential SPECT brain imaging agent. J Label Compound Radiopharm 28:155–166

    Google Scholar 

  • Andersson U, Eckernäs S-A, Hartvig P, Ulin J, Langström B, Haggström J-E (1990) Striatal binding of11C-NMSP studied with positron emission tomography in patients with persistent tardive dyskinesia: no evidence for altered dopamine D2 receptor binding. J Neural Transm 79:215–226

    Google Scholar 

  • Aquilonius S-M, Bergström K, Eckernäs S-Å, Hartvig P, Leenders KL, Lundgvist H, Antoni G, Gee A, Rimland A, Uhlin J, Langström B (1987) In vivo evaluation of striatal dopamine re-uptake sites using11C-nomifensine and positron emission tomography. Acta Neural Scand 76:283–287

    Google Scholar 

  • Arnett CD, Fowler J, Wolf AP, Logan J, Macgregor R (1984) Mapping brain neuroleptic receptors in the live baboon. Biol Psychiatry 19:1365–1375

    PubMed  Google Scholar 

  • Arnett CD, Fowler J, Wolf AP, Shine CY, Logan J (1985) Positron-emitting radioligands for imaging neuroleptic receptors. J Cereb Blood Flow Metab 5:S597-S598

    Google Scholar 

  • Arnett CD, Wolf AP, Shine CY, Fowler JS, MacGregor RR, Christman DR, Smith MR (1986) Improved delineation of human dopamine receptors using (18F)-N-methylspiroperidol and PET. J Nucl Med 27:1878–1882

    PubMed  Google Scholar 

  • Bahn MM, Huang S-C, Hawkins RA, Satyamurthy N, Hoffman JM, Barrio JR, Mazziotta JC, Phelps ME (1989) Models for in vivo kinetic interactions of dopamine D2-neuroreceptors and 3-(2′-(18F)fluoroethyl)spiperone examined with positron emission tomography. J Cereb Blood Flow Metab 9:840–849

    PubMed  Google Scholar 

  • Baron JC, Comar D, Zarifian E, Crouzel C, Mestelan G, Loo H, Agid Y (1983) An in vivo study of the dopaminergic receptors in the brain of man using11C-pimozide and positron emission tomography. In: Magistretti PL (ed) Functional radionuclide imaging of the brain. Raven Press, New York, pp 337–345

    Google Scholar 

  • Baron JC, Mazière B, Loc'h C, Sgouropoulos P, Bonnet AM, Agid Y (1985a) Progressive supranuclear palsy: loss of striatal dopamine receptors demonstrated in vivo by positron tomography. Lancet I:1163–1164

    Google Scholar 

  • Baron J-C, Samson Y, Crouzel C, Berridge M, Chretien L, Deniker P, Comar D, Agid Y (1985b) Pharmacologic studies in man with PET: an investigation using11C-labelled ketanserin, a 5HT2 receptor antagonist. In: Hartmann K, Hoyer S (eds) Cerebral blood flow and metabolism measurement. Springer, Berlin Heidelberg New York, pp 471–480

    Google Scholar 

  • Baron JC, Mazière B, Loc'h C, Cambon H, Sgouropoulos P, Bonnet AM, Agid Y (1986) Loss of striatal (76 Br) bromospiperone binding sites demonstrated by positron emission tomography in progressive supranuclear palsy. J Cereb Blood Flow Metab 6:131–136

    PubMed  Google Scholar 

  • Barrio JR, Huang SC, Phelps ME (1988) In-vivo assessment of neurotransmitter biochemistry in humans. Ann Rev Pharmacol Toxicol 28:213–230

    Google Scholar 

  • Barrio JR, Satyamurthy N, Huang SC, Keen RE, Nissenson CHK, Hoffman JM, Ackermann RE, Balm MM, Mazziotta JC, Phelps ME (1989) 3-(2′(18F)fluoroethyl)Spiperone: in vivo biochemical and kinetic characterization in rodents, non human primates and humans. J Cereb Blood Flow Metab 9:830–839

    PubMed  Google Scholar 

  • Bartenstein P, Ludolph A, Scober O, Lottes G, Scheidhaure K, Beer H-F (1989) Comparison of blood flow and benzodiazepine-receptor-binding in partial epilepsy. In: Mertens J and Bossuyt-Piron C (eds) Radio iodinated molecules for in vivo receptor mapping with SPECT, Vrije Universiteit, Brussels, p 15

    Google Scholar 

  • Beer HF, Blauenstein P, Hasler PH, Delaloye B, Riccabona G, Bangerl I, Hunkeler W, Bonetti EP, Richards JG, Bonetti EP (1990) In vitro and in vivo evaluation of I-123-RO 16-0154: a new imaging agent for SPECT investigations of benzodiazepine receptors. J Nucl Med (to be published)

  • Benwell MEM, Balfour DJK, Anderson JM (1988) Evidence that tobacco smoking increases the density of (-)-3H-nicotine binding sites in human brain. J Neurochem 50:1243–1247

    PubMed  Google Scholar 

  • Billings J, Kung M-P, Chumpradi S, Pan S, Kung HF (1989) [125I](+/-)FISCH: a new CNS D-1 dopamine receptor imaging ligand. Life Sci 45:711–718

    PubMed  Google Scholar 

  • Black KL, Ikezaki K, Toga aAW (1989) Imaging of brain tumours using peripheral benzodiazepine receptors ligands. J Neurosurg 71:113–118

    PubMed  Google Scholar 

  • Blin J, Pappata S, Kiyosawa M, Crouzel C, Baron J-C (1988) (18F)Setoperone: a new high affinity ligand for positron emission tomography study of the serotonin-2 receptors in baboon brain in vivo. Eur J Pharmacol 147:73–82

    PubMed  Google Scholar 

  • Blin J, Baron JC, Cambon H, Bonnet AM, Dubois B, Loc'h C, Mazière B, Agid Y (1989) Striatal dopamine D2 receptors in tardive dyskinesia: PET study. J Neurol Neurosurg Psychiatry 52:1248–1252

    PubMed  Google Scholar 

  • Blin J, Sette G, Fiorelli M, Bletry O, Elghozi J-L, Crouzel C, Baron J-C (1990) A method for the in vivo investigation of the serotonergic S-2 receptors in the human cerebral cortex using positron emission tomography and18F-labeled Setoperone. J Neurochem (in press)

  • Bloom FE (1988) Neurotransmitters: past, present, and future directions. FASEB 2:32–41

    Google Scholar 

  • Bossuyt A, Mertens J, Piron-Bossuyt C, Gijsemans M (1989) Mapping of sertotonin S1 receptor sites by means of I-ketanserin. In: Mertens J and Bossuyt-Piron C (eds) Radio iodinated molecules for in vivo receptor mapping with SPECT. Vrije Universiteit, Brussels, p 16

    Google Scholar 

  • Braestrup C, Squires RF (1977) Specific benzodiazepine receptors in rat brain characterized by high affinity [3H]diazepam binding. Proc Natl Acad Sci USA 74:3805–3809

    PubMed  Google Scholar 

  • Breese GR, Creese I (1986) (eds) Neurobiology of central DI dopamine receptors. Plenum Press, New York

    Google Scholar 

  • Brücke B, Podreka I, Angelberger P, Steiner M, Topitz A, Küfferle B, Suess E, Deecke L (1989) Dopamine D-2 receptor imaging with [I-123]labeled iodobenzamide in SPECT. J Nucl Med 30:731

    Google Scholar 

  • Burns HD, Dannals RE, Långstrom B, Ravert HT, Zemyan SE, Duelfer T, Wong DF, Frost JJ, Kuhar MJ, Wagner HN (1984) (3-N-[11C]-methyl)spiperone, a ligand binding to dopamine receptors: radiochemical synthesis and biodistribution studies in mice. J Nucl Med 25:1222–1227

    PubMed  Google Scholar 

  • Calne DB, Langstrom JW, Martin WR, Stoessl AJ, Ruth TJ, Adam MJ, Pate BD, Schulzer M (1985) Positron emission tomography after MPTP: Observations relating to the cause of Parkinson's disease. Nature 317:246–248

    PubMed  Google Scholar 

  • Cambon H, Baron JC, Boulenger J-P, Loc'h C, Zarifian E, Mazière B (1987) In vivo assays for neuroleptic receptor binding in the striatum. Positron tomography in humans. Br J Psychiatry 151:824–830

    PubMed  Google Scholar 

  • Chalon S, Frangin Y, Guilloteau D, Caillet M, Guimbal C, Schmitt M-H, Displanches G, Baulieu J-L, Besnard J-C (1990) Iodoethylspiperone, a new potential agent for exploration of central dopamine D2 receptors: synthesis and preliminary in vivo study. Nucl Med Biol (in press)

  • Chiueh CC, Bruecke T, Singhaniyom W, McLellan C, Tsai T, Cohen RM, Kung HF (1988) Preclinical trial of a SPECT imaging ligand for denervation-induced supersensitive D-2 dopamine receptors: I-123 labeled benzamide (IBZM). J Nucl Med 29:759

    Google Scholar 

  • Chumpradit S, Kung HF, Billings J, Kung M-P, Pan S (1989) (+/-)-7-Chloro-8-hydroxy-l-(4'-[125I]iodophenyl)-3-methyl2,3,4,5-tetetrahydro-1H-3-benzazepine: A potential CNS D-1 dopamine receptor imaging agent. J Med Chem 32:1431–1435

    PubMed  Google Scholar 

  • Cohen RM, Carson RE, Charming M, Nordhal T, Gross M, Hauck-Newman A, Simpson M, Finn RD, Pert C, Rice K, Blasberg R, Larson SM (1988) F-18-Cyclofoxy Pet imaging in man. J Nucl Med 29:796

    Google Scholar 

  • Comar D, Mazière M, Godot JM, Berger G, Soussaline F, Menini Ch, Arfel G, Naquet R (1979a) Visualization of11C-flunitrazepam displacement in the brain of the live baboon. Nature 280:329–331

    PubMed  Google Scholar 

  • Comar D, Zarifian E, Verhas M, Soussaline F, Mazière M, Berger G, Loo H, Cache H, Kellershohn C, Dencker P (1979b) Brain distribution and kinetics of11C-Chlorpromazine in schizophrenics: positron emission tomography studies. Psychiatry Res 1:23–29

    PubMed  Google Scholar 

  • Crawley JC, Smith T, Veall N, Zanelli GD (1984) Distribution, retention and radiation dosimetry of77Br-p-bromospiperone. Radiat Protect Dosimetry 8:147–153

    Google Scholar 

  • Crawley JC, Crow TJ, Johnstone EC, Oldland SRD, Owen F, Owen DGC, Poulter M, Smith T, Veall N, Zanelli GD (1986) Dopamine D2 receptors in schizophrenia studied in-vivo. Lancet II:224

    Google Scholar 

  • Crouzel C, Mestelan G, Kraus E, Lecomte JM, Comar D (1980) Synthesis of a11C-labelled neuroleptic drug: pimozide. Appl Radiat Isot 31:545–548

    Google Scholar 

  • Dannals RE, Ravert HT, Wilson AA, Wagner HN Jr (1986) An improved synthesis of (3-N[11C]methyl)spiperone. Appl RAdiat Isot 37:433–434

    Google Scholar 

  • Dannals RE, Langstrom B, Ravert HT, Wilson AA, Wagner HN (1988) Synthesis of radiotracers for studying muscarinic cholinergic receptors in the living human brain using positron emission tomography: (11C)dexetimide and (11C)levetimide. Appl Radiat Isot 39:291–295

    Google Scholar 

  • De Jesus OT, Friedman AM, Prasad A, Revenaugh JR (1983) Preparation and purification of77Br-labelled p-bromospiroperidol suitable for in vivo dopamine receptor studies. J Label Compound Radiopharm 20:745–756

    Google Scholar 

  • Delforge J, Syrota A, Mazoyer BM (1990) Identifiability analysis and parameter identification of an in vivo ligand-receptor model from PET data. IEEE Trans Biomed Eng (in press)

  • Dewey SL, Bendriem B, Macgregor B, King R, Fowler JS, Christman DR, Schlyer DJ, Wolf AP, Volkow N, Brodie JD (1989) Pet studies using (11C) Cogentin in baboon brain. J Cereb Blood Flow Metab 9 [Suppl 1]: S13

    Google Scholar 

  • Dodds HN, Mathy MJ, Davidesko D, Van Charldorp KJ, de Jonge A, Van Zietten PA (1987) Selectivity of muscarinic antagonists in radioligand and in vivo experiments for the putative M1, M2 and M3 receptors. J Pharmacol Exp Ther 242:257–262

    PubMed  Google Scholar 

  • Doudet DJ, Miyake H, Finn RT, McLellan CA, Aigner TG, Wan RQ, Adams HR, Cohen RM (1989) 6-18F-F-L-DOPA imaging of the neostriatal system in normal and clinically normal MPTP-treated rhesus monkeys. Exp Brain Res 78:69–80

    PubMed  Google Scholar 

  • Eckelman WC, Eng R, Rzeszotarski WJ, Gibson RE, Francis B, Reba RC (1985) Use of 3-quinuclidinyl 4-iodobenzylate as a receptor binding radiotracer. J Nucl Med 26:637–642

    PubMed  Google Scholar 

  • Ehrlich P (1910) Proc R Soc Biol 424

  • Engel G, Müller-Schweinitzer E, Palacios JM (1984) 2-[125Iodo]LSD, a new ligand for the characterization and localisation of 5 HT2 receptors. Naunyn-Schmiedebergs Arch Pharmacol 325:328–336

    PubMed  Google Scholar 

  • Farde L, Ehrin E, Eriksson L, Greitz T, Hall H, Hedstrom CG, Litton J-E, Sedvall G (1985) Substituted benzamides as ligands for visualization of dopamine receptor binding in the human brain by positron emission tomography. Proc Natl Acad Sci USA 82:3863–3867

    PubMed  Google Scholar 

  • Farde L, Hall H, ehrin E, Sedvall G (1986) Quantitative analysis of D2 dopamine receptor binding in the living human brain by PET Science 231:258–261

    PubMed  Google Scholar 

  • Farde L, Halldin C, Stone-Elander S, Sedvall G (1987a) PET analysis of human dopamine receptor subtypes using11C-SCH 23390 and11C-raclopride. Psychopharmacology 92:278–284

    PubMed  Google Scholar 

  • Farde L, Wiesel FA, Halldin C, Sedvall G (1988a) Central D2 dopamine receptor occupancy in schizophrenic patients treated with antipsychotic drugs. Arch Gen Psychiat 45:71–76

    PubMed  Google Scholar 

  • Farde L, Pauli S, Hall H, Eriksson L, Halldin C, Högberg T, Nilsson L, Sjögren I, Stone-Elander S (1988b) Stereoselective binding of11C-raclopride in living human brain — a search for extrastriatal central D2 dopamine receptors by PET Psychopharmacology 94:471–478

    PubMed  Google Scholar 

  • Farde L, Wiesel F-A, Jansson P, Uppfeldt G, Whalen A, Sedvall G (1988c) An open label trial of raclopride in acute schizophrenia. Conformation of D2 dopamine receptor occupancy by PET Psychopharmacology 94:1–7

    PubMed  Google Scholar 

  • Farde L, Eriksson L, Blomqvist G, Halldin C (1989a) Kinetic analysis of11C-raclopride binding to D2 dopamine receptors studied by PET — a comparison to the equilibrium analysis. J Cereb Blood Flow Metab 9:969–708

    Google Scholar 

  • Farde L, Wiesel F-A, Stone Elander S, Halldin C, Nordström AL, Hall H, Sedvall G (1990) D2 dopamine receptors in neuroleptic naive schizophrenic patients — a PET study with [11C]raclopride. Arch Gen Psychiatry 47:213–219

    PubMed  Google Scholar 

  • Firnau G, Garnett ES, Chan PKH, Belbeck LW (1976) Intracerebral dopamine metabolism studied by a novel radioisotope technique. J Pharm Pharmacol 28:584–585

    PubMed  Google Scholar 

  • Firnau G, Sood S, Chirakal R, Nahmias C, Garnett ES (1987) Cerebral metabolism of 6-18F-fluoro-L-3,4-dihydroxyphenylalanine in the primate. J Neurochem 48:1077–1082

    PubMed  Google Scholar 

  • Fowler JS, Arnett CD, Wolf AP, MacGregor RR, Norton EF, Findley AM (1982) (11C)Spiroperidol: synthesis, specific activity determination and biodistribution in mice. J Nucl Med 23:437–445

    PubMed  Google Scholar 

  • Fowler JS, MacGregor RR, Wolf AP, Arnett CD, Dewley SL, Schlyer D, Christman D, Logan J, Smith M, Sachs H, Aquilonius SM, Bjurling P, Halldin C, Hartvig P, Leenders KL, Lundqvist H, Oreland L, Stalnacke CG, Langstrom B (1987) Mapping humain brain monoamine oxidase A and B with11C-labelled suicide inactivators and PET. Science 235:481–485

    PubMed  Google Scholar 

  • Fowler JS, Wolf AP, MacGregor RR, Dewey SL, Logan J, Schlyer DJ, Langstrom B (1988) Mechanistic positron emission tomography studies: demonstration of a deuterieum isotope effect in the monoamine oxidase-catalysed binding of11C-deprenyl in living baboon brain. J Neurochem 51:1524–1534

    PubMed  Google Scholar 

  • Frey KA, Koeppe RA, Mulholland GK, Jewett DM, Hichwa RD, Agranoff BW, Kuhl DE (1988) Muscarinic receptor imaging in human brain using (C-11) scopolamine and positron emission tomography. J Nucl Med 29:808

    Google Scholar 

  • Friedman AM, Huang CC, Kulmala HA, Dinerstein R, Navone J, Brundsen B, Gawlas D, Cooper M (1982) The use of radiobrominated p-bromospiroperidol for gamma-ray imaging of dopamine receptors. Int J Nucl Med Biol 9:57–61

    PubMed  Google Scholar 

  • Friedman AM, Dejesus OT, Woolverton WL, Van Moffaert G, Goldberg LI, Prasad A, Barnett A, Dinerstein RJ (1985) Positron tomography of a radio-brominated analog of the D1/DA1 antagonist, SCH 23390. Eur J Pharmacol 108:327–328

    PubMed  Google Scholar 

  • Frost JJ, Wagner HN, Dannals RF, Ravert HT, Links JM, Wilson AA, Burns HD, Wong DF, McPherson RW, Rosenbaum AE, Kuhar MJ, Snyder SH (1985) Imaging of opiate receptors in the human brain by positron tomography. J Comput Assist Tomogr 9:231–236

    PubMed  Google Scholar 

  • Frost JJ, Wagner HN, Dannals RF, Ravert HT, Wilson AA, Links JM, Rosenbaum AE, Trifiletti RR, Snyder SH (1986) Imaging benzodiazepine receptors in man with (11C)suriclone by positron emission tomography. Eur J Pharmacol 122:381–383

    PubMed  Google Scholar 

  • Frost JJ, Smith AC, Kuhar MJ, Dannals RF, Wagner HN (1987a) In vivo binding of3H-N-methylspiperone to dopamine and serotonin receptors. Life Sci 40:987–995

    PubMed  Google Scholar 

  • Frost JJ, Mayberg HS, Douglas KH, Fisher R, Pearlson G, Ross C, Dannals RF, Links JM, Snyder H, Wagner HN (1987b) Alteration of cerebral mu-opiate receptors in temporal lobe epilepsy and following electroconvulsive therapy. J Cereb Blood Flow Metab 7 [Suppl 1]:421

    PubMed  Google Scholar 

  • Frost JJ, Dannals RF, Mayberg HS, Links JM, Ravert HT, Wagner HN Jr (1987c) Regional localization of serotonin-2 receptors in man using C-11-N-methylketanserin (NMKET) and PET. J Nucl Med 285:179

    Google Scholar 

  • Garnett ES, Firnau G, Nahmias C (1983) Dopamine visualized in the basal ganglia of living man. Nature 305:137–138

    PubMed  Google Scholar 

  • Gibson RE, Schneidau TA, Cohen VI, Sood V, Ruch J, Melograna J, Eckelman WC, Reba RC (1989) In vitro and in vivo characteristics of [iodine- 125]3-(R)-quinuclidinyl (S)-4-iodobenzylate. J Nucl Med 30:1079–1087

    PubMed  Google Scholar 

  • Gildersleeve DL, Lin T-Y, Wieland DM, Ciliax BJ, Olson JMM, Young AB (1989) Synthesis of a high specific activity125I-labeled analog of PK 11195, potential agent for SPECT imaging of the peripheral benzodiazepine binding site. Nucl Med Biol 16:423–429

    Google Scholar 

  • Glennon RA, Titeler M, McKenney JD (1984) Evidence for 5HT2 involvement in the mechanism of action of hallucinogenic agents. Life Sci 35:2505–2511

    PubMed  Google Scholar 

  • Goffmet AM, Leysen J, Labar D (1990) In vitro pharmacological profile of 3-N-(2-fluoroethyl)spiperone. J Cereb Blood Flow Metab 10:140–142

    PubMed  Google Scholar 

  • Haefely W (1985) Tranquilizers In: Grahame-Smith DG (ed) Psychopharmacology, vol 2, part 1: Preclinical psychopharmacology. Elsevier Science Publishers, Amsterdam, pp 92–181

    Google Scholar 

  • Hagglund J, Aquilonius SM, Eckernas SA, Hartvig P, Lundqvist H, Gullberg P, Langstrom B (1986) Dopamine receptor properties in Parkinson's disease and Huntington's chorea evaluated by positron emission tomography using11C-N-methyl-spiperone. Acta Neurol Scand 75:87–94

    Google Scholar 

  • Hantraye P, Kaijima M, Prenant C, Guibert B, Sastre J, Crouzel M, Naquet R, Comar D, Mazière M (1984) Central type benzodiazepine binding sites: a positron emission tomography study in the baboon's brain. Neurosci Lett 48:115–120

    PubMed  Google Scholar 

  • Hantraye P, Chavoix C, Guibert B, Fukuda H, Brouillet E, Dodd RH, Prenant C, Crouzel M, Naquet R, Mazière M (1987) Benzodiazepine receptors studied in living primates by positron emisson tomography: inverse agonist interactions. Eur J Pharmacol 138:239–247

    PubMed  Google Scholar 

  • Hantraye P, Brouillet E, Fukuda H, Chavoix C, Guibert B, Dodd RH, Prenant C, Crouzel M, Naquet R, Mazière M (1988) Benzodiazepine receptors studied in living primates by positron emission tomography: antagonist interactions. Eur J Pharmacol 153:25–32

    PubMed  Google Scholar 

  • Hantraye P, Riche D, Mazière M, Mazière B, Loc'h C, Isacson O (1989) Anatomical, behavioral and positron emission tomography studies of unilateral excitotoxin lesions of the baboon caudate-putamen as a Primate model of Huntington's disease. In: Crossman AR, Sambrook MA (eds) Neural mechanism in disorders of movement. Libbey, London, pp 183–193

    Google Scholar 

  • Harvey J, Firnau G, Garnett ES (1985) Estimation of the radiation dose in man due to 6-[18F]fluoro-L-DOPA. J Nucl Med 26:931–935

    PubMed  Google Scholar 

  • Herzog H, Coenen HH, Kuwert T, Langen KJ, Stöcklin G, Feinendegen LE (1989) Whole-body distribution of the D2-receptor ligand 3-N-[18F]fluoroethylspiperone. Nuklearmedizin [Suppl] 25:296–299

    Google Scholar 

  • Höll K, Deisenhammer E, Dauth J, Carmann H, Schubiger PA (1989) Imaging benzodiazepine receptors in the human brain by single photon emission tomography (SPELT). Nucl Med Biol 16:759–763

    Google Scholar 

  • Holman BL, Gibson RE, Hill TC, Eckelman WC, Albert M, Reba RC (1985) Muscarinic acetylcholine receptors in Alzheimer's disease. In vivo imaging with iodine-123-labeled 3-quinuclidinyl-4-iodobenzylate and emission tomography. JAMA 254:3063–3066

    PubMed  Google Scholar 

  • Horne MK, Cheng CH, Wooten GF (1984) The cerebral metabolism of L-dihydroxyphenylalanine. Pharmaco 28:12–26

    Google Scholar 

  • Huang S-C, Balm MM, Barrio JR, Hoffman JM, Satyamurthy N, Hawkins RA, Mazziotta JC, Phelps ME (1989) A double-injection technique for in vivo measurement of dopamine D2receptor density in monkeys with 3-(2′(18F)fluoroethyl) spiperone and dynamic positron emission tomography. J Cereb Blood Flow Metab 9:850–858

    PubMed  Google Scholar 

  • Hyttel J (1983) SCH 23390 — the first selective D-1 antagonist. Eur J Pharmacol 91:153–154

    PubMed  Google Scholar 

  • Ioro L, Barnett A, Leitz F (1983) SCH-23390, a potential benzazepine antipsychotic with unique interactions on dopaminergic systems. J Pharmacol Exp Ther 226:462–468

    PubMed  Google Scholar 

  • Johnström P, Duelfer T, Stone-Elander S, Halldin C, Haaparanta M, Solin O, Bergman J, Holland A, Steinman M, Sedvall G (1988) Synthesis of the Benzodiazepine-1 Antagonist [18F]-2oxoquazepam. J Label Compound Radiopharm 26:334–335

    Google Scholar 

  • Jones AKP, Luthra SK, Mazière B, Pike VW, Loc'h C, Crouzel C, Syrota A, Jones T (1988) Regional cerebral opioid receptor studies with (11C]diprenorphine in normal volunteers. J Neurosci Methods 23:121–129

    PubMed  Google Scholar 

  • Jones T (1980) Positron emission tomography and measurements of regional tissue function in man Br Med J 36:231–236

    Google Scholar 

  • Khalili-Varasteh M, Brouillet E, Chavoix C, Kunimoto M, Prenant C, Cayla A, Stulzaft O, Mazière B, Mazière M (1988) Characterisation des récepteurs cholinergiques muscariniques centraux chez le babouin vivant par tomographie par émission de positons. J Med Nucl Biophysique 12:400

    Google Scholar 

  • Kebabian JW, Caine DB (1979) Multiple receptors for dopamine. Nature 277:953–961

    Google Scholar 

  • Kilbourn MR (1988) In-vivo binding of (18F)GBR 13119 to the brain dopamine uptake system. Life Sci 42:1347–1353

    PubMed  Google Scholar 

  • Kilbourn MR, Welch MJ, Dence C, Tewson TJ, Saji H, Maeda M (1984) Carrier-added and no-carrier-added synthesis of (18F)spiroperidol and (u18F)haloperidol. Appl Radiat Isot 35:591–598

    Google Scholar 

  • Kilbourn MR, Carey JE, Koeppe RA, Haka MS, Hutchins GD, Sherman PS, Kuhl D (1989a) Biodistribution, dosimetry, metabolism and monkey PET studies of18F-GBR 13119. Imaging the dopamine uptake system in vivo. Nucl Med Biol 6:569–576

    Google Scholar 

  • Kilbourn MR, Haka MS, Mulholland GK, Jewett DM, Kuhl DE (1989b) Synthesis of radiolabelled inhibitors of pre-synaptic monoamine uptake systems: [18F]GBR 13119 (DA), [11C]Nisoxetine (NE) and [11C]fluoxetine (5HT). J Label Compound 26:412–414

    Google Scholar 

  • Kloster G, Hanus J, Vogest R, Stocklin G (1984)11C-Mesulergin, a potential agent for mapping the serotonin receptor: synthesis and animal experiments. J Label Compound Radiopharm 21:1155–1156

    Google Scholar 

  • Kung HF, Guo Y-Z, Billings JB (1986) New serotonin receptor-site specific brain imaging agent: radioactive iodinated 8-OH-PAT. J Nucl Med 27:972

    Google Scholar 

  • Kung HF, Alavi A, Billings J, Kung M-P, Pan S, Reilly J (1988) [123I]IBZP: A potential CNS D-1 dopamine receptor imaging agent: In vivo biodistribution in a monkey. J Nucl Med 29:758

    Google Scholar 

  • Kung HF, Pan S, Kung M-P, Billings J, Kasliwal R, Reilly J, Alavi A (1989) In vitro and in vivo evaluation of [123I]IBZM: A potential CNS D-2 dopamine receptor imaging agent. J Nucl Med 30:88–92

    PubMed  Google Scholar 

  • Laduron PM (1984) Criteria for receptor sites in binding studies. Biochem Pharmacol 33:833–839

    PubMed  Google Scholar 

  • Langley JN (1878) J Physiol (Lond) 339

  • Larson SM, Di Chiro G (1985) Comparative anatomo-functional imaging of two neuroreceptors and glucose metabolism: a PET study performed in the living baboon. J Comput Assist Tomogr 9:676–681

    PubMed  Google Scholar 

  • Lasne M-C, Pike VW, Turton DR (1989) The radiosynthesis of [N-methyl-11C-]Sertaline. Appl Radiat Isot 40:147–151

    Google Scholar 

  • Leenders KL, Palmer AJ, Quinn N, Clark JC, Firnau G, Garnett ES, Nahmias C, Jones T, Marsden CD (1986a) Brain dopamine metabolism in patients with Parkinson's disease measured with positron emission tomography. J Neurol Neurosurg Psychiatry 49:853–856

    PubMed  Google Scholar 

  • Leenders K, Palmer AJ, Turton D, Quinn N, Firnau G, Garnett ES, Nahmias C, Jones T, Marsden CD (1986b) Dopa uptake and dopamine receptor binding visualized in the human brain in vivo. In: Fahn S, Marsden D (eds) Recent developments in Parkinson's disease. Raven Press, New York, pp 103–113

    Google Scholar 

  • Leenders KL, Frackowiak RSJ, Quinn N, Marsden CD (1986c) Brain energy metabolism and dopaminergic function in Huntington's disease measured in vivo using positron emission tomography. Mov Disord 1:69–77

    PubMed  Google Scholar 

  • Leenders KL, Frackowiak RSJ, Lees AJ (1986d) Steele-Richardson-Olszewski syndrome: brain energy metabolism, blood flow and fluorodopa uptake measured by positron emission tomography. In: Leenders KL (ed) Movement disorders: a study with positron emission tomography. Rodopi, Amsterdam, pp 183–193

    Google Scholar 

  • Leenders KL, Salmon EP, Tyrell P, Perani D, Brooks D, Frackowiak RSJ, Sagar HJ, Marsden CD (1989) Comparison of cerebral (18F)-6-fluorodopa and (11C)-nomifensine uptake in healthy volunteers and patients with Parkinson's disease using PET. Neurology 39 [Suppl 1]:272

    PubMed  Google Scholar 

  • Lever JR, Musachio JL, Scheffel UA, Stathis M, Wagner HN Jr (1989) Synthesis of [I-125/123]-N-iodoallylspiperone for in vivo studies of dopamine D2 receptors. J Nucl Med 30:803

    Google Scholar 

  • Leysen JE, de Chaffoy de Courcelles D, de Clerk F, Neimegeers CFE, Van Nuetten JM (1984) Serotonin-S2 receptor binding sites and functional correlates. Neuropharmacology 23:1493–1501

    PubMed  Google Scholar 

  • Lindvall O, Backlund EO, Farde L, Sedvall G, Freedman R, Hoffer B, Nobin A, Seiber A, Olson L (1987) Transplantation in Parkinson's disease: two cases of adrenal medullary grafts to the putamen. Ann Neurol 22:457–468

    PubMed  Google Scholar 

  • Lindvall O, Brundin P, Widner H, Rehncrona S, Gustavii B, Frakkowiack R, Leenders KL, Sawle G, Rothwell JC, Marsden CD, Björklund A (1990) Grafts of Fetal Dopamine Neurons Survive and Improve Motor Function in Parkinson's Disease. Science 247:574–577

    PubMed  Google Scholar 

  • Lisic EC, McPherson DW, Strivastava PC, Knapp FF Jr (1989) Radioiodinated N-(-ω-iodoalkenyl)spiroperidol analogs for pote, tila dopamine receptor imaging by SPECT. J Nucl Med 30:925

    Google Scholar 

  • Loc'h C, Mazière B, Raynaud C, Bourguignon M, Hantraye P, Stulzaft O, Syrota A, Mazière M (1989) SPECT imaging of dopaminergic D2 receptors with 123-I iodolisuride (123-I ILIS). Eur J Nucl Med 15:403

    Google Scholar 

  • Maeda M, Tewson TJ, Welch MJ (1981) Synthesis of high specific activity18F-spiroperidol for dopamine receptor studies. J Label Compound Radiopharm 18:102–103

    Google Scholar 

  • Maeda M, Komori H, Dohmoto H, Kojima M (1985) Synthesis of radioiodinated analogs of 2-phenyl pyrazolo [4,3]-quinolin3-(5H)-one by a modified triazene method. J Label Compound Radiopharm 22:487–501

    Google Scholar 

  • Martin WRW, Palmer MR, Patlak CS, Calne DB (1989) Nigrostriatal function in humans studied with positron emission tomography. Ann Neurol 26:535–542

    PubMed  Google Scholar 

  • Martinot JL, Paillere-Martinot ML, Loc'h C, Poirier MF, Mazoyer B, Mazière B, Hardy P, Allilaire IF, Beaufils B, Syrota A (1990a) The D2 striatal receptors in schizophrenia A study with PET and76Br-bromolisuride. Br J Psychiatry (to be published)

  • Martinet JL, Huret JD, Peran-Magnan P, Mazoyer B, Baron JC, Boulenger JP, Mazière B, Syrota A, Loo H (1990b) Striatal D2 dopaminergic receptors ascertained in vivo by positron emission tomography and76Br-bromospiperone in untreated schizophrenics. Am J Psychiatry 174:44–50

    Google Scholar 

  • Mayberg HS, Wong DF, Robinson RG, Parikh R, Broussolle EP, Dannals RF, Links JM, Wagner HN (1987) Hemisphere-specific asymmetry of S2 serotonin receptors after stroke. J Cereb Blood Flow Metab 7 [Suppl 1]:191

    Google Scholar 

  • Mazière B, Loc'h C, Hantraye P, Guillon R, Duquesnoy N, Soussaline F, Naquet R, Comar D, Mazière M (1984)76Br-Bromo-spiroperidol: a new tool for quantitative in-vivo imaging of neuroleptic receptors. Life Sci 35:1349–1356

    PubMed  Google Scholar 

  • Mazière B, Loc'h C, Baron JC, Sgouropoulos P, Duquesnoy N, D'Antona R, Cambon H (1985) In vivo imaging of dopamine receptors in human brain using positron emission tomography and76 Br-bromospiperone. Eur J Pharmacol 114:267–272

    PubMed  Google Scholar 

  • Mazière B, Loc'h C, Stulzaft O, Hantraye P, Ottaviani M, Comar D, Mazière M (1986)76Br-Bromolisuride: a new tool for quantitative in vivo imaging of D-2 dopamine receptors. Eur J Pharmacol 127:239–247

    PubMed  Google Scholar 

  • Mazière B, Loc'h C, Raynaud C, Hantraye P, Stulzaft O, Syrota A, Mazière M (1989) I-123 iodolisuride, a new SPECT imaging ligand for brain dopamine D2 receptors. J Nucl Med 30:731

    Google Scholar 

  • Mazière B, Loc'h C, Hantraye P, Stulzaft O, Martinot JL, Syrota A, Mazière M (1990) PET imaging of D2 receptors in the living baboon or human brain in normal and pathological conditions using76Br-bromolisuride. Neuropsychopharmacology (in press)

  • Mazière M, Todd-Pokropek AE, Berger G, Comar D (1977) Carbon-11 labelled compounds in dynamic imaging studies of the brain. In: Medical radionuclide imaging, vol II. AIEA-SM 210/155: 21–30

  • Maziére M, Berger G, Comar D (1978)11C-Clomipramine: synthesis and analysis. J Radioanal Chem 45:453–457

    Google Scholar 

  • Mazière M, Berger G, Masse R, Plummer D, Comar D (1979) The “in vivo” distribution of carbon-11 labeled (-)nicotine in animals A method suitable for use in man. In: Remond A, Izard C (eds) Electrophysiological effects of nicotine. Elsevier, Amsterdam, pp 31–47

    Google Scholar 

  • Mazière M, Godot JM, Berger G, Baron JC, Comar D, Cepeda C, Menini C, Naquet R (1981) Positron tomography. A new method for in vivo brain studies of benzodiazepines in animal and in man. In: Costa E (ed) GABA and Benzodiazepine Receptors. Raven Press, New York, pp 273–285

    Google Scholar 

  • Mazière M, Berger G, Comar D (1982)11C-Radiopharmaceuticals for brain receptor studies in conjunction with positron emission tomography. In: Lambrecht RN, Morcos N (eds) Applications of nuclear and radiochemistry. Pergamon Press, New York, pp 251–270

    Google Scholar 

  • Mazière M, Prenant C, Sastre J, Crouzel M, Comar D, Hantraye P, Kaijima M, Guibert B, Naquet R (1983)11C-RO-15-1788 et11C-Flunitrazepam, deux coordinats pour l'étude par tomographie par positons des sites de liaison des benzodiazepines. CR Acad Sci (Paris) 296:871–876

    Google Scholar 

  • Mazière M, Hantraye P, Prenant C, Sastre J, Comar D (1984) Synthesis of ethyl 8-fluoro-5,6-dihydro-5-(11C)methyl-6-oxo-4H-imidazol(1,5-a) (1,4)benzodiazepine-3-carboxylate (RO 151788-11C): a specific radioligand for the in vivo study of central benzodiazepine receptors by positron emission tomography Appl Radiat Isot 35:973–976

    Google Scholar 

  • Mazière M, Hantraye P, Kaijima M, Dodd R, Guibert B, Prenant C, Sastre J, Crouzel M, Comar D, Naquet R (1985) Visualization by positron emission tomography of the apparent regional heterogeneity of central type benzodiazepine receptors in the brain of living baboons. Life Sci 36:1609–1616

    PubMed  Google Scholar 

  • McKenna DJ, Nazarali AJ, Hoffman AJ, Nichols DE, Mathis CA, Saavedra JM (1989) Common receptors for hallucinogens in rat brain: a comparative autoradiographic study using [125I]LSD and [125I]DOI, a new psychomimetic radioligand. Brain Res 476:45–56

    PubMed  Google Scholar 

  • McQuade RD, Chipkin R, Amlaiky N, Caron M, Ioro L, Barnett A (1988) Characterization of the radioiodinated analogue of SCH 23390: In vitro and in vivo D1 dopamine receptor binding studies. Life Sci 43:1151–1160

    PubMed  Google Scholar 

  • Melega WP, Perlmutter MM, Luxen A, Nissenson CHK, Grafton ST, Huang S-C, Phelps ME, Barrio JR (1989) 4-(18F)fluoro-Lm-tyrosine: An L-3,4-dihydroxyphenylalanine analog for probing presynaptic dopaminergic function with positron emission tomography. J Neurochem 53:311–314

    PubMed  Google Scholar 

  • Mertens J, Terriere D, Bossuyt-Piron A, Bossuyt-Piron C (1988) 4-123I-Spiperone of high purity and high specific activity, a suitable tracer for imaging dopamine recxeptors sites in baboon brains with SPELT. In: Vaalburg W (ed) Seventh International Symposium on Radiopharmaceutical Chemistry University of Groningen, Groningen, pp 135–136

  • Mertens J, Bossuyt-Piron C, De Geeter F, Christiaens L, Cantineau R, Guillaume M, Leyssen J (1989a) Evaluation of pure 2′-I123-spiperone as a promising tracer for in vivo receptor studies with SPECT. J Nucl Med 30:926

    Google Scholar 

  • Mertens J, Bossuyt-Piron C, Guns M, Bossuyt-Piron A, Leysen J (1989b) High selective serotonin S2 receptor mapping with SPECT in baboon brain. J Nucl Med 30:741

    Google Scholar 

  • Mindus P, Ehrin E, Ericsson L, Farde L, Hedström CG, Litton J, Persson A, Sedvall G (1986) Central benzodiazepine receptor binding studied with 11-C labelled Ro 15 1788 and Positron Emission Tomography. Pharmacopsychiatry 19:2–3

    Google Scholar 

  • Moerlein SM, Laufer P, Stöcklin G, Pawlik P, Wienhard K, Heiss W-D (1986) Evaluation of 75Br-labelled butyrophenone neuroleptics for imaging cerebral dopaminergic receptor areas using positron emission tomography. Eur J Nucl Med 12:211–216

    PubMed  Google Scholar 

  • Muhr C, Bergström M, Lundberg PO, Bergström K, Hartvig P, Lundqvist H, Antom G, Längström B (1986) Dopamine receptors in pituitary adenomas: PET visualization with11C-Nmethylspiperone. J Comput Assist Tomog 10:175–180

    Google Scholar 

  • Nahmias C, Garnett ES, Firnau G (1985) Striatal dopamine distribution in parkinsonian patients during life. J Neurol Sci 69:223–230

    PubMed  Google Scholar 

  • Nakatsuka I, Saji H, Shiba K, Shimizu H, Okuno M, Yoshitake A, Yokohama A (1987) In vitro evaluation of radioidonated butyrophenones as radiotracers for dopamine recepto study. Life Sci 41:1989–1997

    PubMed  Google Scholar 

  • Nordberg A, Hartvig P, Lundquist P, Antoni G, Ulin J, Langström B (1989a) Uptake and regional distribution of (+) and (-)-(S)N-[methyl-11C]-nicotine in the brains of rhesus monkey. An attempt to study nicotinic receptors in vivo. J Neural Transm 1:195–205

    Google Scholar 

  • Nordberg A, Hartvig P, Lilja A, Viitanen M, Amberla K, Lundquist H, Anderson J, Nybäck H, Ulin J, Anderson Y, Winblad B, Langström B (1989b) Nicotinic receptors in brain of Alzheimer patients as studied by11C-Nicotine and Positron Emission Tomography (PET). Acta Radiol (in press)

  • Nybäck H, Nordberg A, Langström B, Halldin C, Hartvig P, Ahlin A, Swan CG, Sedvall G (1989) Attempts to visualize nicotinic receptors in the brain of monkey and man by positron emission tomography. Prog Brain Res 79:313–319

    PubMed  Google Scholar 

  • Omokawa H, Tanaka A, Ito M, Nishihara Y, Inoue O and Yamazaki T (1985) Synthesis of N-methyl and N-11C-methyl spiperone by phase transfer catalysis in anhydrous solvent. Radioisotopes 34:480

    PubMed  Google Scholar 

  • Oreland L, Arai Y, Stenstrom A, Fowler J-C (1983) Monoamine oxydase activitry and localisation in the brain and the activity in relation to psychiatric disorders. Mod Prob Pharmacopsychiatry 19:246–254

    Google Scholar 

  • Patlak CS, Blasberg RG (1985) Graphical evaluation of blod-tobrain transfer constants from multiple-time uptake data Generalizations. J Cereb Blood Flow Metab 5:584

    PubMed  Google Scholar 

  • Patlak CS, Blasberg RG, Fenstemmacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3:1–7

    PubMed  Google Scholar 

  • Pauli JR, Stitzel JA, Marks MJ, Collins AC (1989) An autoradiographic analysis of cholinergic receptors in mouse brain. Brain Res Bull 22:453–459

    PubMed  Google Scholar 

  • Perlmutter JS (1988) New insights into the pathophysiology of Parkinson's disease: the challenge of positron emission tomography. Trends Neurosci 11:203–208

    PubMed  Google Scholar 

  • Perlmutter JS, Kilbourn MR, Raichle ME, Welch MJ (1987) Positron emission tomographic demonstration of up-regulation of radioligand-receptor binding in human MPTP-induced parkinsonism. J Cereb Blood Flow Metab 7:S371

    Google Scholar 

  • Persson A, Ehrin E, Eriksson L, Farde L, Hedström CG, Litton JE, Mindus P, Sedvall G (1985) Imaging of 11-C-labelled Ro 15 1788 binding to benzodiazepine receptors in the human brain by positron emission tomography. J Psychiat Res 19:609–622

    PubMed  Google Scholar 

  • Rutgers AW, Lakke JPFW, Paans AMJ, Vaalburg W, Korf J (1987) Tracing of dopamine receptors in hemiparkinsonism with positron emission tomography (PET). J Neurol Sci 880:237–248

    Google Scholar 

  • Saji H, Nakatsuka I, Shiba K, Tokui T, Horiuchi K, Yoshitake A, Torizuka K, Yokohama A (1987) Radioiodinated 2′-iodospiperone: A new radioligand for in vivo dopamine receptor study. J Nucl Med 41:1999–2006

    Google Scholar 

  • Salmon EP, Brooks DJ, Mathis CJ, Bannister R, Leenders KL, Quinn N, Marsden CD and Frackowiak RSJ (1989) Studies on the integrity of the dopamine system in Shy-Drager syndrome and pure autonomic failure using11C-nomifensine and PET. Neurology 39 [Suppl 1]:204

    Google Scholar 

  • Samson Y, Hantraye P, Baron J-C, Soussaline F, Comar D, Mazière M (1985) Kinetics and displacement of (11C)RO 15 1788, a benzodiazepine antagonist, studied in human brain in vivo by positron tomography. Eur J Pharmacol 110:247–251

    PubMed  Google Scholar 

  • Samson Y, Bernuau J, Pappata S, Chavoix C, Baron JC, Mazière M (1987) Cerebral uptake of benzodiazepine measured by positron emission tomography in hepatic encephalopathy. N Engl J Med 316:414–415

    PubMed  Google Scholar 

  • Satyamurthy N, Barrio JR, Bida GT, Huang SC, Mazziotta JC, Phelps ME (1990) 3-(2′-(18F)fluoroethyl)spiperone, a potent dopamine antagonist: Synthesis, structural analysis and in-vivo utilizations in humans. Appl Radiat Isot 41:113–129

    Google Scholar 

  • Savic I, Roland P, Sedvall G, Persson A, Pauli S, Widen L (1988) In vivo demonstration of reduced benzodiazepine receptor binding in human epileptic foci. Lancet II:863–866

    Google Scholar 

  • Schoemaker H, Boles RG, Horst WD, Yamamura HI (1983) Specific High-affinity Binding sites for [3H]Ro 5-4864 in rat brain and kidney. J Pharmacol Exp Ther 225:61–69

    PubMed  Google Scholar 

  • Schotte A, Leysen JE (1989) Identification of 5-HT2 receptors, α-adrenoreceptors and amine release sites in rat brain by autoradiography with [125I]7-amino-8-iodo-ketanserin. Eur J Pharmacol [Mol Sect] 172:99–106

    Google Scholar 

  • Sette M, Raisman R, Briley M, Langer SZ (1981) Localisation of tricyclic antidepressant binding sites on serotonin nerve terminals. J Neurochem 37:40–42

    PubMed  Google Scholar 

  • Shinotoh H, Yamasaki T, Inoue O, Itoh T, Suzuki K, Hashimoto K, Tateno Y, Ikehira H (1986) Visualization of specific binding sites of benzodiazepine in human brain. J Nucl Med 27:1593–1599

    PubMed  Google Scholar 

  • Shinotoh H, Inoue O, Suzuki K, Yamasaki T, Iyo M, Hashimoto K, Tominaga T, Itch T, Tateno Y, Ikehira H (1987) Kinetics of11C-N,N-Dimethylphenylethylamine in mice and humans: Potential for measurement of brain MAO-B activity. J Nucl Med 28:1006–1011

    PubMed  Google Scholar 

  • Skinotoh H, Iyo M, Yamada T, Inoue O, Susuki K, Itch T, Fukuda H, Yamasaki T, Tateno Y, Hirayama K (1989) Detection of benzodiazepine receptor occupancy in the human brain by positron emission tomography. Psychopharmacology 99:202–207

    PubMed  Google Scholar 

  • Shiue CY, Fowler JS, Wolf AP, Watanabe M, Arnett C (1985) Synthesis and specific activity determinations of no-carrier-added (NCA)18F-labeled butyrophenone neuroleptics-benperidol, haloperidol, spiroperidol and pipamperone. J Nucl Med 26:181–186

    PubMed  Google Scholar 

  • Shine CY, Fowler JS, Wolf AP, McPherson DW, Arnett C, Zecca L (1986) No-carrier added fluorine-18-labeled N-methylspiroperidol: Synthesis and biodistribution in mice. J Nucl Med 27:226–234

    PubMed  Google Scholar 

  • Sidhu A, van Oene JC, Dandridge P, Kaiser C, Kebabian JW (1986) [125]SCH 23982: the ligand of choice for identifying the D-1 dopamine receptor. Eur J Pharmacol 128:213–220

    PubMed  Google Scholar 

  • Starosta-Rubinstein S, Ciliax BJ, Penney JB, McKeever P, Young AB (1987) Imaging of a glioma using peripheral benzodiazepine receptor ligands. Proc Natl Acad Sci USA 84:891–895

    PubMed  Google Scholar 

  • Stoof JC, Kebabian JW (1981) Opposing roles for D1 and D2 dopamine receptors in efflux of cyclic AMP from rat neostriatum. Nature 294:366–368

    PubMed  Google Scholar 

  • Stoof JC, Kebabian JW (1984) Two dopamine receptors: biochemistry, physiology and pharmacology. Life Sci 35:2281–2296

    PubMed  Google Scholar 

  • Syrota A, Comar D, Paillotin G, Davy J-M, Aumont M-C, Stulzaft O, Mazière B (1985) Muscarinic cholinergic receptor in the human heart evidenced under phsyiological conditions by positron emission tomography. Proc Natl Acad Sci USA 82:584–588

    PubMed  Google Scholar 

  • Tafani JAM, Lazorthes Y, Danet B, Verdie JC, Esquerre JP, Simon J, Guiraud R (1989) Human brain and spinal cord scan after intracerebroventricular administration of iodine-123 morphine. Nucl Med Biol 16:505–509

    Google Scholar 

  • Tedroff F, Aquilonius S-M, Laihinen A, Rinne U, Hartvig P, Andersson J, Lundqvist H, Haaparanta-Solin M, Solin O, Antoni G, Gee AD, Ulin J, Långström B (1988) Monoamine re-uptake sites in the human brain evaluated in vivo by means of11C-nomifensine and Positron Emission Tomography: The effects of age and Parkinson's disease. Acta Neurol Scand 77:192–201

    PubMed  Google Scholar 

  • Tedroff J, Aquilonius S-M, Laihinen A, Rinne U, Hartvig P, Andersson J, Lundqvist H, Haaparanta-Solin M, Soin O, Antoni G, Gee AD, Ulin J, L⫗ngström B (1990) Striatal kinetics of (11C)-(+)-nomifensine and 6-(18F)fluoro-L-dopa in Parkinson's disease measured with positron emission tomography. Acta Neurol Scand (in press)

  • Thonoor CM, Couch MW, Greer DM, Thomas KD, Williams CM (1988) Biodistribution and radiation dosimetry of radioiodinated-SCH 23982, a potential dopamine D-1 receptor imaging agent. J Nucl Med 29:1668–1674

    PubMed  Google Scholar 

  • Turton DR, Pike VW, Cartoon M, Widdowson DA, Matthews RW (1984a) A method for the preparation of 2-(11C)methylspiperone — An agent for studying dopamine receptor distribution in vivo. J Label Compound Radiopharm 21:1148–1149

    Google Scholar 

  • Turton DR, Pike VW, Cartoon M, Widdowson DA (1984b) Preparation of a potential marker for glial cells (N-methyl-11C)Ro 5-4864. J Label Compound Radiopharm 21:1209

    Google Scholar 

  • Wagner HN, Burns HD, Dannals RF, Wong DF, Langstrom B, Duelfer T, Frost JJ, Ravert HT, Links JM, Rosenbloom SB, Lukas SE, Kramer AV, Kuhar MJ (1983) Imaging dopamine receptors in the human brain by positron tomography. Science 221:1264–1266

    PubMed  Google Scholar 

  • Wagner HN, Burns HD, Dannals RF, Wong DF, Langstrom B, Duelfer T, Frost JJ, Ravert HT, Links JM, Rosenbloom SB, Lukas SE, Kramer AV, Kuhar MJ (1985) Imaging of dopamine receptors in the human brain by positron tomography. In: Greitz T, Ingvar DH, Widen L (eds) The metabolism of the human brain studied with positron emission tomography. Raven Press, New York, pp 251–267

    Google Scholar 

  • Weinberger DR, Gibson RE, Coppola R, Jones DW, Braun AR, Mann U, Berman KF, Sunderland T, Chase TN, Reba RC (1989) Distribution of muscarinic receptors in patients with dementia: A controlled studym of 1231 QNB ans SPELT. J Cereb Blood Flow Metab 9:S537

    Google Scholar 

  • Whitehouse PJ, Martino AM, Antuono PG, Lowenstein PR, Coyle JT, Price DL, Kellar KJ (1986) Nicotinic Acetylcholine binding sites in Alzheimer's disease. Brain Res 371:146–151

    PubMed  Google Scholar 

  • Wilson AA, Dannals RF, Ravert HT, Frost JJ, Wagner HN Jr (1989) Synthesis and biological evaluation of [125I] and [123I]4-iodo-dexetimide, a potent muscarinic cholinergic receptor antagonist. J Med Chem 32:1057–1062

    PubMed  Google Scholar 

  • Wong DF, Wagner HN, Dannals RF, Links JM, Frost JHJ, Ravert HT, Wilson AA, Rosenbaum AE, Gjedde A, Douglass KH, Petronis JD, Folstein MF, Toung JKT, Burns HD, Kuhar MD (1984) Effects of age on dopamine and serotonin receptors measured by positron tomography in the living human brain. Science 226:1393–1396

    PubMed  Google Scholar 

  • Wong DF, Wagner HN, Tune LE, Dannals RF, Pearlson GD, Links JM, Tamminga CA, Broussole EP, Ravert HT, Wilson AA, Toung JKT, Malat J, Williams JA, O'Tuama LA, Snyder SH, Kuhar MJ, Gjedde A (1986) Positron emission tomography revealed elevated D2 dopamine receptors in drug-naive schizophrenics. Science 234:1558–1563

    PubMed  Google Scholar 

  • Wong DF, Lever JR, Hartig PR, Dannals RF, Villemagne V, Hoffman BJ, Wilson AA, Ravert HT, Links JM, Scheffel U, Wagner HN (1987) Localization of serotonin 5-HT2 receptors in living human brain by positron emission tomography using N1-(11C-methyl)-2-Br-LSD. Snyapse 1:393–398

    Google Scholar 

  • Yamamura HI, Kuhar MJ, Greenberg D, Snyder SH (1974) Muscarinic cholinergic receptor binding: regional distribution in monkey brain. Brain Res 171:473–480

    Google Scholar 

  • Yamasaki T, Inoue O, Shinotoh H, Itoh T, Iyo M, Tateno Y, Susuki K, Hashimoyo K, Tadokora H (1986) Benzodiazepine receptor study in the elderly using PET and clinical application of a new tracer, C-11-α-methyl N-methyl benzyl amine. In: Kitani K (ed) Liver and aging, liver and brain. Elsevier, Amsterdam, pp 265–276

    Google Scholar 

  • Zanzonico PB, Bigler RE, Schmall B (1983) Neuroleptic binding sites: specific labeling in mice with 18F Haloperidol, a potential tracer for positron emission tomography. J Nucl Med 24:408–416

    PubMed  Google Scholar 

  • Zecca L, Ferrario P (1988) Synthesis and biodistribution of an 1231-labelled flunitrazepam derivative: a potential in vivo tracer for benzodiazepine receptors. Appl Radiat Isot 39:353–356

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazière, B., Mazière, M. Where have we got to with neuroreceptor mapping of the human brain?. Eur J Nucl Med 16, 817–835 (1990). https://doi.org/10.1007/BF00833018

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00833018

Key words

Navigation