Journal of engineering physics

, Volume 23, Issue 3, pp 1199–1201 | Cite as

Conjugate equation of heat conduction for an isotropic linear viscoelastic body

  • V. V. Kryuchkovskii
  • P. I. Khristichenko


A conjugate equation of heat conduction is derived for a material which behaves viscoelastically under both shear and volume deformation.


Statistical Physic Heat Conduction Viscoelastic Body Volume Deformation Conjugate Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    B. Boley and J. Wayner, Theory of Thermal Stresses [Russian translation], Izd. Mir, Moscow (1964).Google Scholar
  2. 2.
    G. A. Teters, Compound Loading and Stability of Polymer Shells [in Russian], Izd. Zinatne, Riga (1969).Google Scholar
  3. 3.
    V. E. Gul' and V. N. Kuleznev, Structure and Mechanical Properties of Polymers [in Russian], Izd. Vysshaya Shkola, Moscow (1966).Google Scholar
  4. 4.
    G. G. Hiltin, “Theory of viscoelasticity,” in: Principles of Designing Plastic Parts [Russian translation], Izd. Mashinostroenie, Moscow (1970).Google Scholar
  5. 5.
    A. A. Il'yushin and B. E. Pobedra, Mathematical Principles of Thermoviscoelasticity Theory [in Russian], Izd. Nauka, Moscow (1970).Google Scholar
  6. 6.
    V. S. Postinkov, Internal Friction in Metals [in Russian], Izd. Metallurgiya, Moscow (1969).Google Scholar
  7. 7.
    G. Parkus, Transient Thermal Stresses [Russian translation], Fizmatgiz, Moscow (1963).Google Scholar
  8. 8.
    A. I. Lur'e, Theory of Elasticity [in Russian], Izd. Nauka, Moscow (1970).Google Scholar

Copyright information

© Consultants Bureau 1974

Authors and Affiliations

  • V. V. Kryuchkovskii
    • 1
  • P. I. Khristichenko
    • 1
  1. 1.M. V. Lomonosov Technical Institute of the Food IndustryOdessa

Personalised recommendations