Advertisement

Journal of engineering physics

, Volume 24, Issue 6, pp 726–730 | Cite as

Experimental study concerning the coefficient of thermal diffusion as a function of the concentration and the temperature in N2-Ar, N2-CO2, and Ar-CO2 systems

  • A. G. Shashkov
  • A. F. Zolotukhina
  • T. N. Abramenko
Article
  • 17 Downloads

Abstract

The coefficients of thermal diffusion in N2-Ar, N2-CO2, and Ar-CO2 systems was measured with a bicameral apparatus. The test results are shown and compared with theoretical ones which take into account elastic and inelastic collisions.

Keywords

Experimental Study Statistical Physic Thermal Diffusion Inelastic Collision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    R. Furth, Proc. Roy. Soc,A179, 461 (1942).Google Scholar
  2. 2.
    E. Whalley and R. E. S. Winter, Trans. Faraday Soc,4b, 517 (1950).Google Scholar
  3. 3.
    M. R. Laranjeira, Physica,26, 417, 11 (1960).Google Scholar
  4. 4.
    M. R. Laranjeira and J. Kistenmaker, ibid.,26, 431, 111 (1960).Google Scholar
  5. 5.
    K. E. Grew and T. L. Ibbs, Thermal Diffusion in Gases [Russian translation], Moscow (1956).Google Scholar
  6. 6.
    G. P. Titov, A. I. Chukharev, and P. E. Suetin, in: Heat and Mass Transfer and the Transport Characteristics of Substances [in Russian], Vol. 7, Minsk (1972).Google Scholar
  7. 7.
    B. Lous and E. A. Mason, J. Chem. Phys.,54, No. 7, 3020 (1971).Google Scholar
  8. 8.
    W. H. Taylor and S. Weissman, ibid.,54, No. 7, 3013 (1971).Google Scholar
  9. 9.
    L. Monchik, R. J. Munn, and E. A. Mason, ibid.,45, 3051 (1968).Google Scholar
  10. 10.
    L. Monchik, S. L. Sandier, and E. A. Mason, ibid.,49, 1178 (1968).Google Scholar
  11. 11.
    A. F. Zolotukhina, in: Heat and Mass Transfer and the Transport Characteristics of Substances [in Russian], Vol. 7, Minsk (1972).Google Scholar
  12. 12.
    K. L. Grew, F. A. Johnson, and W. E. Neal, Proc. Roy. Soc,A224, 513 (1954).Google Scholar
  13. 13.
    B. P. Mathur and S. C. Saxena, Z. Naturforsch.,22a, 164 (1967).Google Scholar
  14. 14.
    J. E. Walther and H. G. Drickamer, J. Phys. Chem.,62, 421 (1958).Google Scholar
  15. 15.
    A. K. Batabyal, A. K. Chosh, and A. K. Barua, J. Chem. Phys.,47, 2 (1967);Google Scholar
  16. 16.
    L. Waldmann, Z. Naturforsch.,2a, 358 (1947).Google Scholar
  17. 17.
    L. Waldmann, ibid.,4a, 105 (1949).Google Scholar
  18. 18.
    L. Waldmann, ibid.,2, 124 (1947).Google Scholar
  19. 19.
    G. Hirshfelder, Ch. Curtiss, and R. Byrd, Molecular Theory of Gases and Liquids [Russian translation], IL (1961).Google Scholar
  20. 20.
    T. L. Ibbs, Proc. Roy. Soc,A107, 470 (1925).Google Scholar
  21. 21.
    T. L. Ibbs and H. Inderwood, Proc. Phys. Soc,39, 227 (1927).Google Scholar
  22. 22.
    A. E. Humphreys and P. Gray, Proc. Roy. Soc. London,A320, 397, 1542 (1970).Google Scholar
  23. 23.
    A. K. Batabyal, A. K. Chosh, and A. K. Barua, J. Chem. Phys.,48, 11 (1968).Google Scholar
  24. 24.
    J. R. Gozen and K. E. Grew, Phys. of Fluids,7, 7, 1395 (1964).Google Scholar
  25. 25.
    S. Acharyya and A. K. Barua, J. Phys. B. (Atom. Molec. Phys.),3, 8, 1052 (1970).Google Scholar

Copyright information

© Plenum Publishing Corporation 1975

Authors and Affiliations

  • A. G. Shashkov
  • A. F. Zolotukhina
  • T. N. Abramenko

There are no affiliations available

Personalised recommendations