Skip to main content
Log in

Mechanistic and phenomenological features of proton pumps in the respiratory chain of mitochondria

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Various direct, indirect (kinetic and thermodynamic), and combined mechanisms have been proposed to explain the conversion of redox energy into a transmembrane protonmotive force (Δp) by enzymatic complexes of respiratory chains. The conceptual evolution of these models is examined. The characteristics of thermodynamic coupling between redox transitions of electron carriers and scalar proton transfer in cytochromec oxidase and its possible involvement in proton pumping is discussed. Other aspects dealt with in this paper are: (i) variability of ← H+/e stoichiometries, in cytochromec oxidase and cytochromec reductase and its mechanistic implications; (ii) possible models by which the reduction of dioxygen to water at the binuclear heme-copper center of protonmotive oxidases can be directly involved in proton pumping. Finally a unifying concept for proton pumping by the redox complexes of respiratory chain is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Artzatbanov, V. Y., Konstantinov, A. A., and Skulachev, V. P. (1978).FEBS Lett. 87 180–185.

    PubMed  Google Scholar 

  • Babcock, G. T., and Wikström, M. K. F. (1992).Nature (London) 356 301–309.

    PubMed  Google Scholar 

  • Blair, D. F., Ellis, W. R., Wang, H., Gray, H. B., and Chan, S. I. (1985).J. Biol. Chem. 261 11524–11537.

    Google Scholar 

  • Blair, D. F., Gelles, J., and Chan, S. I. (1986).Biophys. J. 50 713–733.

    PubMed  Google Scholar 

  • Boyer, P. D., Chance, B., Ernster, L., Mitchell, P., Racker, E., and Slater, E. C. (1977).Annu. Rev. Biochem. 46 955–1026.

    Google Scholar 

  • Brown, G. C. (1989).J. Biol. Chem. 264 14704–14709.

    PubMed  Google Scholar 

  • Brown, G. C., and Brand, M. D. (1986).Biochem. J. 234 75–81.

    PubMed  Google Scholar 

  • Brown, S., Rumbley, J.N., Moody, A.J., Thomas, J.W., Gennis, R.B., and Rich, P.R. (1994).Biochim. Biophys. Acta 1183 521–532.

    PubMed  Google Scholar 

  • Capitanio, N., De Nitto, E., Villani, G., Capitanio, G., and Papa, S. (1990).Biochemistry 29 2939–2945.

    PubMed  Google Scholar 

  • Capitanio, N., Capitanio, G., De Nitto, E., Villani, G., and Papa, S. (1991).FEBS Lett. 288 179–182.

    PubMed  Google Scholar 

  • Chan, S. I., and Li, P. M. (1990).Biochemistry 29 1–12.

    PubMed  Google Scholar 

  • Cocco, T., Lorusso, M., Di Paola, M., Minuto, M., and Papa, S. (1992).Eur. J. Biochem. 209 475–481.

    PubMed  Google Scholar 

  • De Paula, J. C., Peiffer, W. E., Ingle, R. T., Centeno, J. A., Ferguson-Miller, S., and Babcock, G. T. (1990).Biochemistry 29 8702–8706.

    PubMed  Google Scholar 

  • Dutton, P. L., and Wilson, D. F. (1974).Biochim. Biophys. Acta 346 165–212.

    PubMed  Google Scholar 

  • Ellis, W. R., Wang, H., Blair, D. F., Gray, H. B., and Chan, S. I. (1986).Biochemistry 25 161–167.

    PubMed  Google Scholar 

  • Erecinska, M., Chance, B., and Wilson, D. F. (1971).FEBS. Lett. 16 284–286.

    PubMed  Google Scholar 

  • Fitzgerald, L. D. (1976).Biological Handbooks, Cell Biology (Altman, P. L., and Dittmer Katz, D., eds.), Fed. Am. Soc. Expt. Biology, Bethseda, Maryland, Vol. 1, pp. 72–89.

    Google Scholar 

  • Guerrieri, F., Maida, I., and Papa, S. (1981).FEBS Lett. 125 261–265.

    PubMed  Google Scholar 

  • Hallen, S. (1993). Phd Thesis, Bibliotekets Reproservice, Göteberg.

    Google Scholar 

  • Hallen, S., and Nilsson, T. (1992).Biochemistry 31 11853–11859.

    PubMed  Google Scholar 

  • Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckmann, E., and Downing, K. H. (1990).J. Mol. Biol. 213 899–929.

    PubMed  Google Scholar 

  • Hosler, J. P., Ferguson-Miller, S., Calhoun, M. W., Thomas, J. W., Hill, J., Lemieux, L., Ma, J., Georgia, C., Fetter, J., Shapleigh, J., Tecklenburg, M. M. J., Babcock, G. T., and Gennis, R. B. (1993).J. Bioenerg. Biomembr. 25 121–136.

    PubMed  Google Scholar 

  • Hosler, J. P., Shapleigh, J. P., Tecklenburg, M. H. J., Thomas, J. W., Kim, Y., Espe, M., Fetter, J., Babcock, G. T., Alben, J. O., Gennis, R. B., and Ferguson-Miller, S. (1994).Biochemistry 33 1194–1201.

    PubMed  Google Scholar 

  • Klinman, J. P., and Brenner, M. (1988). InOxidases and Related Redox Systems (King, T. E., Mason, H. S., and Morrison, M. eds.), Alan Liss, New York, pp. 227–246.

    Google Scholar 

  • Konstantinov, A. A., Capitanio, N., Vygodina, T. V., and Papa, S. (1992).FEBS Lett. 264 71–74.

    Google Scholar 

  • Kotylar, A. B., Sled, V. D., Moroz, I. A., and Vinogradov, A. D. (1990).FEBS Lett. 264 17–20.

    PubMed  Google Scholar 

  • Larsen, R. W., Pam, L. P., Musser, S. M., Li, Z., and Chan, S. I. (1992).Proc. Natl. Acad. Sci. USA 89 723–727.

    PubMed  Google Scholar 

  • Lawford, H. G., and Garland, P. B. (1973)Biochem. J. 136 711–720.

    PubMed  Google Scholar 

  • Lemon, D. D., Calhaun, M. W., Gennis, R. B., and Woodruff, W. H. (1993).Biochemistry 32 11953–11956.

    PubMed  Google Scholar 

  • Lenaz, G., Barnabei, O., Rabbi, A., and Battino, M., eds. (1990).Highlights in Ubiquinone Research, Taylor and Francis, London.

    Google Scholar 

  • Lorusso, M., Capuano, F., Boffoli, D., Stefanelli, R., and Papa, S. (1979).Biochem. J. 182 133–147.

    PubMed  Google Scholar 

  • Lorusso, M., Cocco, T., Boffoli, D., Gatti, D., Meinhardt, S., Ohnishi, T., and Papa, S. (1989).Eur. J. Biochem. 179 535–540.

    PubMed  Google Scholar 

  • Luvisetto, S., Conti, E., Buso, M. and Azzone, G. F. (1991).J. Biol. Chem. 266 1034–1042.

    PubMed  Google Scholar 

  • Maison Peteri, B., and Malmström, B. G. (1989).Biochemistry 28 3156–3160.

    PubMed  Google Scholar 

  • Malmström, B. G. (1985).Biochim. Biophys. Acta 811 1–12.

    PubMed  Google Scholar 

  • Malmström, B. G. (1989).FEBS Lett. 250 9–21.

    PubMed  Google Scholar 

  • Malmström, B. G. (1990).Chem. Rev. 90 1247–1260.

    Google Scholar 

  • Miki, T., and Orii, Y. (1986).J. Biol. Chem. 261 3915–3918.

    PubMed  Google Scholar 

  • Mitchell, P. (1966).Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation, Glynn, Research Ltd., Bodmin, U.K.

    Google Scholar 

  • Mitchell, P. (1976).J. Theor. Biol. 62 327–367.

    PubMed  Google Scholar 

  • Mitchell, P. (1987a). InAdvances in Membrane Biochemistry and Bioenergetics (Kim, C. H., Tedeschi, H., Diwan, J. J., and Salerno, J. C., eds.), Plenum, New York and London, pp. 25–52.

    Google Scholar 

  • Mitchell, P. (1987b).FEBS Lett. 222 235–245.

    PubMed  Google Scholar 

  • Mitchell, P. (1988). InCytochrome Oxidase. Structure Function, and Physiopathology (Brunori, M., and Chance, B., eds.),Ann. N. Y. Acad. Sci. 550 185–198.

    PubMed  Google Scholar 

  • Mitchell, P., and Moyle, J. (1983).FEBS Lett. 151 167–178.

    PubMed  Google Scholar 

  • Mitchell, P., Moyle, J., and Mitchell, R. (1979).Methods Enzymol. 55 627–640.

    PubMed  Google Scholar 

  • Mitchell, P., Mitchell, R., Moody, A. J., West, I. C., Baum, H., and Wrigglesworth, J. M. (1985).FEBS Lett. 188 1–7.

    PubMed  Google Scholar 

  • Mitchell, R., and Rich, P. R. (1994).Biochim. Biophys. Acta,186 19–26.

    Google Scholar 

  • Mitchell, R., Mitchell, P., and Rich. P. R. (1992).Biochim. Biophys. Acta 1101 188–191.

    PubMed  Google Scholar 

  • Moody, A. J., and Rich, P. R. (1990).Biochim. Biophys. Acta 1015 205–215.

    PubMed  Google Scholar 

  • Murphy, M. P. (1989).Biochim. Biophys. Acta 977 123–141.

    PubMed  Google Scholar 

  • Murphy, M. P., and Brand, M. D. (1988)Eur. J. Biochem. 173 645–651.

    PubMed  Google Scholar 

  • Nicholls, D. G. (1974).Eur. J. Biochem. 50 305–315.

    PubMed  Google Scholar 

  • Nicholls, P., and Petersen, L. C. (1974).Biochem. Biophys. Acta 357 462–467.

    PubMed  Google Scholar 

  • Ohnishi, T., and Trumpower, B. L. (1980).J. Biol. Chem. 255 3278–3284.

    PubMed  Google Scholar 

  • Oliveberg, M., Hallen, S., and Nilsson, T. (1991).Biochemistry 30 436–440.

    PubMed  Google Scholar 

  • Papa, S. (1976).Biochim. Biophys. Acta 456 39–84.

    PubMed  Google Scholar 

  • Papa, S. (1988). InOxidases and Related Redox Systems. (Mason, H. S., ed.). Elsevier Amsterdam, pp. 49–94.

    Google Scholar 

  • Papa, S., and Lorusso, M. (1984). InBiomembranes (Burton, R. M., and Guerra, F. C., eds.), Plenum, London, pp. 257–290.

    Google Scholar 

  • Papa, S., Guerrieri, F., Lorusso, M., and Simone, S. (1973).Biochimie 55 703–716.

    PubMed  Google Scholar 

  • Papa, S., Lorusso, M., and Guerrieri, F. (1975).Biochim. Biophys. Acta 387 425–440.

    PubMed  Google Scholar 

  • Papa, S., Guerrieri, F., and Izzo, G. (1979).FEBS Lett. 105 213–216.

    PubMed  Google Scholar 

  • Papa, S., Capuano, F., Markert, M., and Altamura, N. (1980a).FEBS Lett. 177 243–248.

    Google Scholar 

  • Papa, S., Guerrieri, F., Lorusso, M., Izzo, G., Boffoli, D., Capuano, F., Capitanio, N., and Altamura, N. (1980b).Biochem. J. 192 203–218.

    PubMed  Google Scholar 

  • Papa, S., Guerrieri, F., Izzo, G., and Boffoli, D. (1983a).FEBS Lett. 157 15–20.

    PubMed  Google Scholar 

  • Papa, S., Lorusso, M., Boffoli, D., and Bellomo, E. (1983b).Eur. J. Biochem. 137 405–412.

    PubMed  Google Scholar 

  • Papa, S., Guerrieri, F., and Izzo, G. (1986).Methods Enzymol. 126 331–343.

    PubMed  Google Scholar 

  • Papa, S., Capitanio, N., and De Nitto, E. (1987).Eur. J. Biochem. 164 507–516.

    PubMed  Google Scholar 

  • Papa, S., Lorusso, M., Cocco, T., Boffoli, D., and Lombardo, M. (1989). InHighlights in Ubiquinone Research (Lenz, G., Barnabei, O., Rabbi, A., and Battino, M., eds.), Taylor and Francis, London, pp. 122–135.

    Google Scholar 

  • Papa, S., Capitanio, N., Capitanio, G., De Nitto, E., and Minuto, M. (1991).FEBS Lett. 288 183–186.

    PubMed  Google Scholar 

  • Pietrobon, D., Zoratti, M., and Azzone, G. F. (1983).Biochim. Biophys. Acta 723 317–321.

    PubMed  Google Scholar 

  • Proteau, G., Wrigglesworth, J. M., and Nicholls, P. (1983).Biochem. J. 210 199–205.

    PubMed  Google Scholar 

  • Reynafarje, B., Brand, M. D., Alexandre, R., and Lehninger, A. L. (1979).Methods Enzymol. 55 640–656.

    PubMed  Google Scholar 

  • Rich, P. R. (1991).Biosci. Rep. 11 539–568.

    PubMed  Google Scholar 

  • Rousseau, D. L., Ching, Y. C., and Wang, J. (1993).J. Bioenerg. Biomembr. 25 165–176.

    PubMed  Google Scholar 

  • Thomas, J. W., Lemieux, L. J., Alben, J. O., and Gennis, R. B. (1993).Biochemistry 32 11173–11180.

    PubMed  Google Scholar 

  • Urban, P. F., and Klingenberg, M. (1969).Eur. J. Biochem. 519–525.

  • Van Gelder, B. F., Van Rijin, J. L. M. L., Schilder, G. J. A., and Wilms, J. (1977). InStructure and Function of Energy- Transducing Membranes (Van Dam, K., and Van Gelder, B. F., eds.), Elsevier North-Holland Biomedical Press, Amsterdam, pp. 61–68.

    Google Scholar 

  • Varotsis, C., Zhang, Y., Appelman, E.H., and Babcock, G.T. (1993).Proc. Natl. Acad. Sci. USA 90 237–241.

    PubMed  Google Scholar 

  • Verkhovskaya, M., Verkhovsky, M., and Wikström, M. K. F. (1992).J. Biol. Chem. 267 14559–14562.

    PubMed  Google Scholar 

  • Von Jagow, G., and Sebald, W. (1980).Annu. Rev. Biochem. 49 281–314.

    PubMed  Google Scholar 

  • Vygodina, T., and Konstantinov, A. A. (1987).FEBS Lett. 219 387–392.

    PubMed  Google Scholar 

  • Vygodyna, T., and Konstantinov, A. A. (1988).Ann. N. Y. Acad. Sci. 550 124–138.

    PubMed  Google Scholar 

  • Vygodina, T., and Konstantinov, A. A. (1989).Biochim. Biophys. Acta 937 390–398.

    Google Scholar 

  • Weiss, H., Friedrich, T., Hofhaus, G., and Preis, D. (1991).Eur. J. Biochem. 197 563–576.

    PubMed  Google Scholar 

  • West, I. C., Mitchell, R., Moody, A. J., and Mitchell, P. (1986).Biochem. J. 236 15–21.

    PubMed  Google Scholar 

  • Westerhoff, H. V., andDancshazy, Zs. (1984).Trends Biochem. Sci. 9 112–117.

    Google Scholar 

  • Wikström, M. K. F. (1977).Nature (London) 266 271–273.

    PubMed  Google Scholar 

  • Wikström, M. K. F. (1989).Nature (London) 338 776–778.

    PubMed  Google Scholar 

  • Wikström, M. K. F., and Krab, K. (1978). InEnergy Conservation in Biological Membranes (Schäfer, G., and Klingenberg, M., eds.), Springer-Verlag, Berlin, pp. 128–139.

    Google Scholar 

  • Wikström, M.K.F., and Krab, K. (1979).Biochim. Biophys. Acta 549 177–222.

    PubMed  Google Scholar 

  • Wikström, M. K. F., Krab, K., and Saraste, M. (1981).Cytochrome oxidase. A synthesis, Academic Press New York and London.

  • Wikström, M. K. F., and Saraste, M. (1984). InBioenergetics (Ernster, L., ed.), Elsevier, Amsterdam, pp. 49–94.

    Google Scholar 

  • Wilson, D. F., Lindsay, J. G., and Brocklehurst, E. S. (1972).Biochim. Biophys. Acta 256 277–286.

    PubMed  Google Scholar 

  • Woodruff, W. H. (1993).J. Bioenerg. Biomembr. 25 177–188.

    PubMed  Google Scholar 

  • Wrigglesworth, J. M., Elsden, J., Chapman, A., Van der Water, N., and Grahm, M. F. (1988)Biochim. Biophys. Acta 936 452–464.

    PubMed  Google Scholar 

  • Wyman, J. (1968).Q. Rev. Biophys. 1 35–81.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papa, S., Lorusso, M. & Capitanio, N. Mechanistic and phenomenological features of proton pumps in the respiratory chain of mitochondria. J Bioenerg Biomembr 26, 609–618 (1994). https://doi.org/10.1007/BF00831535

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00831535

Key words

Navigation