Advertisement

Journal of engineering physics

, Volume 18, Issue 5, pp 566–569 | Cite as

Effective thermal conductivity of comminuted aggregates

  • A. I. Tamarin
Article

Abstract

The steady-state heat flow through an aggregate of particles in a disordered arrangement is analyzed. A relation for calculating the effective thermal conductivity of such an aggregate is derived and compared with experimental data.

Keywords

Experimental Data Thermal Conductivity Statistical Physic Heat Flow Effective Thermal Conductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    O. Kris cher and H. Rohnhalter, ZSVDF Forschungsheft, p. 402 (1940).Google Scholar
  2. 2.
    R. S. Bernshtein, Research on the Combustion of Natural Fuels [in Russian], Izd. GEI, Moscow (1948).Google Scholar
  3. 3.
    H. W. Russel, Jour. Amer. Ceramic Soc.,18, No. 1 (1935).Google Scholar
  4. 4.
    T. E. Schumann and V. Voss, Fuel in Sci. and Pract.,13, No. 6 (1934).Google Scholar
  5. 5.
    V. Z. Bogomolov, Trudy Fiz.-Agronom. Inst., No. 3 (1941).Google Scholar
  6. 6.
    D. Kunii and I. M. Smith, A. I. Ch. E. Jour.,6, No. 171 (1960).Google Scholar
  7. 7.
    G. N. Dul'nev, Inzh. Fiz. Zh.,9, No. 3 (1965).Google Scholar
  8. 8.
    L. V. Vasil'ev and Yu. E. Fraiman, Thermophysical Properties of Poor Heat Conductors [in Russian], Izd. Nauka i Tekhnika, Minsk (1967).Google Scholar
  9. 9.
    M. M. Fulk, Progress in Cryogenics, London (1959), Chap. 1.Google Scholar
  10. 10.
    H. W. Godbee and W. T. Ziegler, Jour. Appl. Phys.,37, No. 1 (1966).Google Scholar
  11. 11.
    W. G. Kannuluik and L. H. Martin, Proc. Roy. Soc.,A141, 144 (1933).Google Scholar
  12. 12.
    L. A. Prins, I. Schenk, and J. G. L. Schran, Physica,16, 397 (1950).Google Scholar
  13. 13.
    R. H. Kropschot, Cryogenic Technology, New York-London (1963), p. 243.Google Scholar
  14. 14.
    A. L. Waddams, Jour. Soc. Chem. Ind.,63, 337–340 (1944).Google Scholar
  15. 15.
    G. Hengst, Thermal Conductivity of Comminuted Thermal Insulation Materials at High Gas Pressure [in German], Munich (1934).Google Scholar
  16. 16.
    G. Kling, General Heat Engineering [in German], (1952), Chap. 3, pp. 167–174.Google Scholar
  17. 17.
    H. Verschot and G. C. A. Schuit, Appl. Sci. Res.,A2 (1950).Google Scholar
  18. 18.
    A. Misnar, Thermal Conductivity of Solids, Liquids, Gases, and Their Mixtures [Russian translation], Izd. Mir, Moscow (1968).Google Scholar
  19. 19.
    V. I. Odelevskii, Zh. Tekh. Fiz.,21, No. 6 (1951).Google Scholar
  20. 20.
    G. E. Dul'nev and Z. V. Sigalova, Inzh. Fiz. Zh.,13, No. 5 (1967).Google Scholar
  21. 21.
    A. F. Chudnovskii, Thermophysical Characteristics of Comminuted Materials [in Russian], Izd. GIFML (1962).Google Scholar
  22. 22.
    S. S. Zabrodskii, G. I. Kovenskii, and A. I. Tamarin, in: Research on Transfer Processes in Aparatus with Comminuted Systems [in Russian], Izd. Nauka i Tekhnika, Minsk (1969).Google Scholar

Copyright information

© Consultants Bureau 1973

Authors and Affiliations

  • A. I. Tamarin
    • 1
  1. 1.Institute of Heat and Mass TransferAcademy of Sciences of the BSSRMinsk

Personalised recommendations