Journal of engineering physics

, Volume 17, Issue 1, pp 785–790 | Cite as

Measuring the parameters of a dispersed-annular flow

  • M. V. Davydova
  • V. N. Zelenskii
  • P. L. Kirillov


We present certain experimental data on the parameters of the dispersed-annular flow of a vapor-water mixture; these data have been derived with a tube 18 mm in diameter, 3 m in length, and for the following range of variations in the basic parameters: the weight velocities varied from 145 to 400 kg/m2·sec; the pressures varied from 9.8 to 49 N/cm2; and finally, the vapor content varied from 0 to 0.5. We derived results on film thickness, the boundaries of existence for a dispersed-annular flow regime, the pressure gradient, and the volumetric vapor content.


Experimental Data Statistical Physic Film Thickness Pressure Gradient Flow Regime 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    C. Raisson, Rapport TT N-62 (texte presente an Symposium dIspRA, de Juin, 1966).Google Scholar
  2. 2.
    N. A. Radovicich and R. Moissis, MIT Report No. 7-7673-22, June (1962).Google Scholar
  3. 3.
    A. E. Bergles, R. F. Lopina, and M. P. Fiori, Journal of Heat Transfer,89, C, 1 (1967).Google Scholar
  4. 4.
    M. Silvestrie, in: Problems of Heat Transfer [Russian translation], Atomizdat (1967), p. 199.Google Scholar
  5. 5.
    G. B. Wallis, AEEW-R142 (1962).Google Scholar
  6. 6.
    A. E. Dukler and O. P. Berglin, Chem. Engng. Progress,48, 11 (1952).Google Scholar
  7. 7.
    G. H. Anderson and B. G. Mantzouranis, Chem. Engng. Sci.,12. 1 (1960).Google Scholar
  8. 8.
    G. F. Hewitt, AERE-R 3680 (1961).Google Scholar
  9. 9.
    F. E. Tippets, Journal of Heat Transfer,86, C, 1 (1964).Google Scholar
  10. 10.
    S. S. Kutateladze and M. A. Styrikovich, The Hydraulics of Gas-Liquid Systems [in Russian], GEI (1958).Google Scholar
  11. 11.
    P. A. Semenov, Zh. Tekh. Fiz.,20 (1950).Google Scholar
  12. 12.
    B. I. Konobeev et al., Dokl. Akad. Nauk SSSR,117, 4 (1957).Google Scholar
  13. 13.
    S. Levi, Int. Journal Heat Mass Transfer,9, 3 (1966).Google Scholar
  14. 14.
    C. S. Chearer and R. M. Nedderman, Chem. Engng. Sci.,20, 7 (1965).Google Scholar
  15. 15.
    L. E. Gill and G. F. Hewitt, AERE-3935 (1962).Google Scholar
  16. 16.
    G. F. Hewitt, R. D. King, and P. C. Lovegrove, AERE-R 3921 (1962).Google Scholar
  17. 17.
    G. F. Hewitt, H. A. Kearsey, P. M. C. Lacey, and D. I. Pulling, AERE-R 4374 (1963).Google Scholar
  18. 18.
    G. F. Hewitt, H. A. Kearsey, P. M. C. Lasey, and D. I. Pulling, AERE-R 4864 (1965).Google Scholar
  19. 19.
    T. Quanc and I. D. Huyghe, Sympos. Two-Phase Flow, Exeter, Devon, England, SC-201-212 (1965).Google Scholar
  20. 20.
    Adorni et al., CISE Report R 35 (1961); R-53 (1963); R-73 (1963).Google Scholar

Copyright information

© Consultants Bureau 1972

Authors and Affiliations

  • M. V. Davydova
    • 1
  • V. N. Zelenskii
    • 1
  • P. L. Kirillov
    • 1
  1. 1.Physics and Power-Engineering InstituteObninsk

Personalised recommendations