Skip to main content
Log in

Mathematical simulation of thermogravitational convection in solidification of liquid steel

  • Published:
Journal of engineering physics Aims and scope

Abstract

The thermal and hydrodynamic phenomena accompanying crystallization of liquid steel are analyzed numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. E. Z. Rabinovich, “Experimental study of motion of fused metal in an open channel,” Dokl. Akad. Nauk SSSR,54, No. 3, 201–203 (1946).

    Google Scholar 

  2. B. V. Rabinovich, Introduction to Casting Hydraulics [in Russian], Mashinostroenie, Moscow (1966).

    Google Scholar 

  3. V. M. Borishanskii and S. S. Kutateladze, “Calculation of heat transfer and hydraulic resistance in flow of liquid metals in tubes,” Energomashinostroenie, No. 6, 58–62 (1957).

    Google Scholar 

  4. V. M. Borishanskii and S. S. Kutateladze, “Heat transfer and hydraulic resistance in flow of liquid metals,” Zh. Tekh. Fiz.,28, No. 4, 836–847 (1958).

    Google Scholar 

  5. G. F. Balandin, Fundamentals of Casting Formation Theory [in Russian], Mashinostroenie, Moscow (1979).

    Google Scholar 

  6. G. F. Balandin and L. P. Kashirtsev, “Study of structural-mechanical properties of aluminum-silicon alloys in the crystallization interval,” in: Casting Properties of Alloys [in Russian], Naukova Dumka, Kiev (1968), pp. 228–240.

    Google Scholar 

  7. E. A. Leonova, “Mechanical properties of metals in the vicinity of the crystallization temperature,” in: Elasticity and Inelasticity [in Russian], Vol. 1, Moscow State Univ. (1971), pp. 221–252.

  8. G. A. Ostroumov, Free Convection Under Internal Problem Conditions [in Russian], Gostekhteorizdat, Moscow-Leningrad (1952).

    Google Scholar 

  9. I. L. Povkh, É. A. Lodko, and P. F. Zavgorodnii, “Study of thermal gravitational convection and its effect on heat-mass transfer processes in solidifying melts,” Tepolofiz. Vys. Temp.,16, No. 6, 1250–1257 (1978).

    Google Scholar 

  10. Yu. A. Samoilovich, “Hydrodynamic phenomena in the unsolidified portion (liquid core) of a casting,” Izv. Akad. Nauk, SSSR, Met., No. 2, 84–92 (1969).

    Google Scholar 

  11. B. I. Vaisman and E. L. Tarunin, “Effect of crystallization on the free convection process in fused metals,” Uch. Zap. Perm. Univ., No. 293, 107–118 (1972).

    Google Scholar 

  12. P. G. Kroeger and S. Ostrach, “The solution of a two-dimensional freezing problem including convection effects in liquid region,” Int. J. Heat Mass Transfer,17, No. 10, 1191–1207 (1974).

    Google Scholar 

  13. S. Asai and J. Szekely, “Turbulent flow and its effects in continuous casting,” Ironmaking Steelmaking,2, No. 3, 205–213 (1975).

    Google Scholar 

  14. B. I. Myznikova and E. L. Tarunin, “Free convection in fused metals during crystallization,” in: Mathematical Methods in the Study of Special Electrometallurgy Processes [in Russian], Naukova Dumka, Kiev (1976), pp. 129–136.

    Google Scholar 

  15. Yu. A. Samoilovich, L. N. Yasnitskii, and Z. K. Kabakov, “Composite problem of heat exchange and hydrodynamics in a solidifying melt,” Teplofiz. Vys. Temp.,19, No. 4, 814–820 (1981).

    Google Scholar 

  16. L. G. Loitsyanskii, Liquid and Gas Mechanics [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  17. E. G. Shvidovskii, Some Questions on the Viscosity of Fused Metals [in Russian], Gostekhizdat (1955).

  18. R. D. Richtmyer and K. W. Morton, Difference Methods for Initial-Value Problems, Wiley (1967).

  19. B. B. Gulyaev, Theory of Casting Processes [in Russian], Mashinostroenie, Leningrad (1976).

    Google Scholar 

  20. A. J. Chorin, “Numerical solution of the Navier-Stokes equation,” Math. Comp.,22, No. 104, 745–762 (1968).

    Google Scholar 

  21. Yu. A. Samoilovich and L. N. Yasnitskii, “Algorithm for solution of problems of thermogravitational convection of a viscous incompressible liquid by the finite element method,” Dep. VINITI No. 1131-80.

  22. Yu. A. Samoilovich and L. N. Yashnitskii, “Method for stabilization of the numerical solution of nonstationary Navier-Stokes equations in the high Reynolds number range,” dep. VINITI, No. 19194-81.

  23. V. G. Kozlov, “Stability of periodic liquid motion in a plane channel,” Izv. Akad. Nauk SSSR, Mekh. Zhidk, Gaza, No. 6, 114–118 (1979).

    Google Scholar 

  24. A. A. Yakimov, “Secondary convection flows in a plane vertical liquid layer with internal heat sources,” in: Hydrodynamics. Proceedings of Perm Pedagogical Institute [in Russian], Vol. 7, Perm. Knizh. Izd., Perm (1974), pp. 53–63.

    Google Scholar 

  25. G. Z. Gershuni and E. M. Zhukovitskii, Convective Stability of Incompressable Fluids, Halsted Press (1976).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 44, No. 3, pp. 465–473, March, 1983.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samoilovich, Y.A., Yasnitskii, L.N. & Kabakov, Z.K. Mathematical simulation of thermogravitational convection in solidification of liquid steel. Journal of Engineering Physics 44, 326–333 (1983). https://doi.org/10.1007/BF00827373

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00827373

Keywords

Navigation