Skip to main content
Log in

Mathematical modeling of the heat-transfer process and solid particles in a fluidized bed

  • Published:
Journal of engineering physics Aims and scope

Abstract

The authors formulate a two-concentration model of particle mixing in a fluidized bed, accounting for particle inertia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. O. E. Potter, “Mixing,” in: Fluidization [Russian translation], E. I. F. Davidson and D. Harrison (eds.), Khimiya, Moscow (1974), pp. 253–332.

    Google Scholar 

  2. J. J. Van Deemter, “The countercurrent flow model of a gas-solid fluidized bed,” Proc. Int. Symp. Fluidization, Eindhoven (1967), pp. 334–347.

  3. O. M. Todes, L. S. Sheinina, M. Z. Fainitskii, and M. A. Puzrin, “Two-parameter model of mixing of the solids in a fluidized bed,” TOKhT,14, No. 1, 139–144 (1980).

    Google Scholar 

  4. Yu. S. Teplitskii, “Circulation-diffusion model for mixing of solid particles in a fluidized bed,” Izv. Akad. Nauk BSSR, Ser. Fiz. Energ. Nauk, No. 2, 119–126 (1981).

    Google Scholar 

  5. I. N. Taganov, Modeling of Mass and Energy Transfer Processes [Russian translation], Khimiya, Leningrad (1979).

    Google Scholar 

  6. A. V. Lykov, Heat Conduction [in Russian], Vysshaya Shkola, Moscow (1967).

    Google Scholar 

  7. M. E. Aérov and O. M. Todes, Hydraulic and Thermal Basis for Operation of Equipment with Stationary and Fluidized Granular Beds [in Russian], Khimiya, Leningrad (1968).

    Google Scholar 

  8. G. Taylor, “Dispersion of soluble matter in solvent flowing slowly through a tube,” Proc. R. Soc. Ser. A, Math. Phys. Sci.,219, No. 1137, 186–203 (1953).

    Google Scholar 

  9. N. S. Koshlyakov, é. B. Gliner, and M. M. Smirnov, Equations in the Partial Derivatives of Mathematical Physics [in Russian], Vysshaya Shkola, Moscow (1970).

    Google Scholar 

  10. V. A. Borodulya and A. I. Tamarin, “Use of an instantaneous heat source to study mixing of particles in a fluidized bed,” Inzh. -Fiz. Zh., No. 11, 101–104 (1962).

    Google Scholar 

  11. Yu. E. Livshits, A. I. Tamarin, and Yu. S. Teplitskii, “Mixing of large particles in a fluidized bed with tube bundles,” Izv. Akad. Nauk BSSR, Ser. Fiz. Energ. Nauk, No. 4, 83–87 (1977).

    Google Scholar 

  12. V. M. Pakhaluev, “Investigation of the heat-transfer process in stagnated fluidized beds,” Author's Abstract of Candidate's Dissertation, Technical Sciences, Sverdlovsk (1969).

    Google Scholar 

  13. Yu. S. Teplitskii, “Theory of unsteady methods of determining the effective diffusivity of a fluidized bed,” Izv. Akad. Nauk BSSR, Ser. Fiz. Energ. Nauk, No. 3, 89–95 (1980).

    Google Scholar 

  14. A. A. Samarskii, Theory of Difference Schemes [in Russian], Nauka (1977).

  15. A. A. Samarskii and E. S. Nikolaev, Methods of Solving Mesh Equations [in Russian], Nauka, Moscow (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 42, No. 2, pp. 251–259, February, 1982.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borodulya, V.A., Teplitskii, Y.S., Epanov, Y.G. et al. Mathematical modeling of the heat-transfer process and solid particles in a fluidized bed. Journal of Engineering Physics 42, 169–176 (1982). https://doi.org/10.1007/BF00827265

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00827265

Keywords

Navigation