Skip to main content
Log in

Growth of the spark current at the breakdown of short vacuum gaps at steady voltage

  • Published:
Soviet Physics Journal Aims and scope

Abstract

The growth time of the spark current at the time of breakdown in vacuum at the constant voltage and pressure existing during this period was investigated with high time resolution. It was shown that, as in the case of a pulsed breakdown: 1) the growth time tc of the current increases in proportion to the length d of the gap and the ratio d/tc is ∼2.5·106 cm/sec; 2) the transition to a rapid rate of current growth (di/dt > 108 A/sec) takes place in 1–3 nsec; 3) during the period of current growth, x-ray radiation appears and a transfer of anode material to the cathode is observed. These results serve as evidence that the origin of current growth is connected with the appearance of efficient electron sources on the cathode. These, as in the case of pulsed breakdowns, are evidently cathode flares, the formation of which has an explosive character and can be identified with the act of breakdown initiation. In essence this event does not change with the rate at which voltage is supplied across the gap and consists of the explosive disintegration of emitting microspikes on the cathode. The appearance of cathode flares indicates the start of an irreversible breakdown of vacuum insulation. The emergence of a burst of x-rays and the erosion of the anode are explained by the action on the anode of a powerful stream of electrons that are emitted from the cathode flares, providing the spark current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. I. N. Slivkov, V. I. Mikhailov, N. I, Sidorov, and A. M. Nastyukha, Electrical Breakdown and Discharge in Vacuo [in Russian], Atomizdat (1966).

  2. G. M. Kassirov and G. A. Mesyats, Zh. Tekh. Fiz.,34, No. 8, 1476 (1964).

    Google Scholar 

  3. S. P. Bugaev, A. M. Iskol'dskii, G. A. Mesyats, and D. I. Proskurovskii, Zh. Tekh. Fiz.,37, No. 12, 2206 (1967).

    Google Scholar 

  4. G. A. Mesyats, S. P. Bugaev, D. I. Proskurovskii, V. I. Éshkenazi, and Ya. Ya. Yurike, Radiotekhnika i Élektronika,14, No. 12, 2222 (1969).

    Google Scholar 

  5. G. A. Mesyats and D. I. Proskurovskii, Izv. VUZ. Fiz., No. 1, 81 (1968).

    Google Scholar 

  6. S. P. Bugaev, G. A. Mesyats, and D. I. Proskurovskii, Dokl. Akad. Nauk SSSR,186, No. 5, 1067 (1969).

    Google Scholar 

  7. R. P. Little and W. T. Whitney, J. Appl. Phys.,34, No. 8, 2430 (1963).

    Google Scholar 

  8. C. J. Bennette, L. W. Swanson, and F. M. Charbonnier, J. Appl. Phys.,38, No. 2, 634 (1967).

    Google Scholar 

  9. V. I. Gordienko and L. I. Pivovar, Zh. Tekh. Fiz.,37, No. 5 (1967).

  10. J. Brodie, J. Appl. Phys.,35, 2324 (1964).

    Google Scholar 

  11. D. Alpert, D. A. Lee, E. M. Lyman, and H. E. Tomaschke, J. Vacuum Sci. and Technol.,1, No. 2, 35 (1964).

    Google Scholar 

  12. W. P. Dyke, J. K. Trolan, E. E. Martin, and J. P. Barbour, Phys. Rev.,91, No. 5, 1043 (1953).

    Google Scholar 

  13. I. L. Sokol'skaya and G. N. Fursei, Radiotekhnika i Élektronika,7, No. 9, 1474 (1962).

    Google Scholar 

  14. V. A. Gor'kov, M. I. Elinson, and G. D. Yakovleva, Radiotekhnika i Élektronika,7, No. 9, 1501 (1962).

    Google Scholar 

  15. G. K. Kartsev, G. A. Mesyats, D. I. Proskurovskii, V. P. Rotshtein, and G. N. Fursei, Dokl. Akad. Nauk SSSR,192, No. 2, 309 (1970).

    Google Scholar 

  16. I. N. Slivkov, Zh. Tekh. Fiz.,39, No. 10, 1822 (1969);40, No. 2, 328 (1970).

    Google Scholar 

  17. E. E. Martin, J. K. Trolan, and W. P. Dyke, J. Appl. Phys.,31, No. 5, 782 (1960).

    Google Scholar 

  18. G. N. Fursei and G. K. Kartsev, Zh. Tekh. Fiz.,40, No. 2, 310 (1970).

    Google Scholar 

  19. L. I. Pranevichyus and Yu. I. Bartashyus, Zh. Tekh. Fiz.,39, No. 9, 1728 (1969).

    Google Scholar 

  20. G. M. Kassirov and B. M. Koval'chuk, Zh. Tekh. Fiz.,34, No. 3, 348 (1964).

    Google Scholar 

  21. N. F. Olendzskaya and M. A. Sal'man, Zh. Tekh. Fiz.,40, No. 2, 333 (1970).

    Google Scholar 

  22. R. Z. Clark and A. S. Gilmour, Proc. Third Int. Symp. on Disch. and Elect. Insul. in Vacuum, Paris (1968), p. 367.

  23. N. B. Rozanova and V. L. Granovskii, Zh. Tekh. Fiz.,26, No. 3, 489 (1956).

    Google Scholar 

  24. L. V. Tarasova and V. G. Kalinin, Zh. Tekh. Fiz.,34, No. 4, 666 (1964).

    Google Scholar 

  25. D. K. Davies and M. A. Biondi, J. Appl. Phys.,41, 88 (1970).

    Google Scholar 

  26. P. A. Chatterton, Proc. Phys.,88, 231 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii Fizika, No. 9, pp. 93–97, September, 1971.

The authors thank G. A. Mesyats for his constant attention to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Proskurovskii, D.I., Yurike, Y.Y. Growth of the spark current at the breakdown of short vacuum gaps at steady voltage. Soviet Physics Journal 14, 1238–1242 (1971). https://doi.org/10.1007/BF00826875

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00826875

Keywords

Navigation