Journal of engineering physics

, Volume 42, Issue 4, pp 470–475 | Cite as

Equivalence of certain types of rheological equations of state for polymer media

Part 1. General analysis
  • B. M. Khusid


The conditions are established under which rheological relaxation equations and rheological integral equations will be equivalent.


Polymer Statistical Physic Integral Equation Polymer Medium Relaxation Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    C. Truesdell and W. Noll, “Nonlinear field theories of mechanics,” in: Handbook of Physics, Vol. III/3, Springer-Verlag, Berlin (1965).Google Scholar
  2. 2.
    C. Truesdell (ed.), Continuum Mechanics, Vol. 2, Rational Mechanics of Materials, Gordon and Breach (1965).Google Scholar
  3. 3.
    G. Astarita and G. Marucci, Basic Hydromechanics of Newtonian Fluid [Russian translation], Mir, Moscow (1978).Google Scholar
  4. 4.
    A. S. Lodge, Body Tensor Fields in Continuum Mechanics, Academic Press, New York (1974).Google Scholar
  5. 5.
    R. R. Bird, R. C. Armstrong, and O. Hassager, Dynamics of Polymer Fluids, Vol. 1, Wiley, New York (1977).Google Scholar
  6. 6.
    G. V. Vinogradov and A. Ya. Malkin, Rheology of Polymers [in Russian], Khimiya, Moscow (1977).Google Scholar
  7. 7.
    Chaig Dei Khan, Rheology of Polymer Reprocessing [in Russian], Khimiya, Moscow (1979).Google Scholar
  8. 8.
    A. S. Lodge, “Constitutive equations from molecular network theories for polymer solutions,” Rheol. Acta,7, No. 4, 379–392 (1968).Google Scholar
  9. 9.
    F. R. Gantmakher, Theory of Matrices, Chelsea Publ.Google Scholar
  10. 10.
    T. D. Goddard, “Polymeric fluid mechanics,” Adv. Appl. Mech.,19, 143–219 (1979).Google Scholar
  11. 11.
    C. Truesdell and R. A. Toupin, “Classical field theories,” Handbook of Physics, Vol. III/l, Springer-Verlag, Berlin (1960), pp. 226–793.Google Scholar
  12. 12.
    L. I. Sedov, Introduction to Mechanics of Continuous Media [in Russian], Fizmatgiz, Moscow (1962).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • B. M. Khusid
    • 1
  1. 1.Belorussian Polytechnic InstituteMinsk

Personalised recommendations