Journal of engineering physics

, Volume 44, Issue 1, pp 109–113 | Cite as

Waveguide properties of gradient periodic fiber lightguides

  • P. M. Kolesnikov
  • I. P. Rudenko


Propagation of lower surface waves is studied in gradient fibers with longitudinal additive inhomogeneity.


Statistical Physic Surface Wave Lower Surface Waveguide Property Periodic Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    E. M. Zolotov, V. A. Kiselev, and V. A. Sychugov, “Optical phenomena in thin film waveguides,” Usp. Fiz. Nauk,112, No. 2, 231–273 (1974).Google Scholar
  2. 2.
    T. Élashi, “Waves in active and passive periodic structures,” TIIÉR,64, No,12, 22–59 (1976).Google Scholar
  3. 3.
    Michael K. Barnoski (ed.), Introduction to Integrated Optics, Plenum (1974).Google Scholar
  4. 4.
    D. Markuze, Optical Waveguides [Russian translation], Mir, Moscow (1974).Google Scholar
  5. 5.
    T. Tamir, Integral Optics [Russian translation], Mir, Moscow (1978).Google Scholar
  6. 6.
    V. N. Luk'yanov, A. T. Semenov, N. V. Shelkov, and S. D. Yakubovich, “Lasers with distributed inverse feedback,” Kvantovaya Elektron.,2, No. 11, 2373–2398 (1975).Google Scholar
  7. 7.
    N. B. Yakovkin and D. V. Petrov, Light Diffraction on Acoustic Surface Waves [in Russian], Nauka, Moscow-Leningrad (1979).Google Scholar
  8. 8.
    P. M. Kolesnikov, Energy Transfer in Inhomogeneous Media [in Russian], Nauka i Tekhnika, Minsk (1977).Google Scholar
  9. 9.
    O. G. Martynenko, P. M. Kolesnikov, and V. L. Kolpashchikov, Introduction to the Theory of Convective Gas Lenses [in Russian], Nauka i Tekhnika, Minsk (1972).Google Scholar
  10. 10.
    L. Brillouin and P. Parodi, Wave Propagation in Periodic Structures [Russian translation], IL, Moscow (1959).Google Scholar
  11. 11.
    T. Tamir, H. C. Wang, and A. A. Oliner, “Wave propagation in sinusoidally stratified media,” IEEE Trans. Microwave Theory Tech.,12, No. 3, 323–335 (1964).Google Scholar
  12. 12.
    P. M. Kolesnikov, O. G. Martynenko, and I. P. Rudenok, “Toward a theory of waves in open gradient fiber lightguides,” Radiotekhn. Elektron.,24, No. 11, 2173–2178 (1979).Google Scholar
  13. 13.
    P. M. Kolesnikov and I. P. Rudenok, “Electromagnetic waves in gradient film waveguides,” Radiotekh. Elektron.,24, No. 11, 2179–2184 (1979).Google Scholar
  14. 14.
    P. M. Kolesnikov and I. P. Rudenok, “Waveguide properties of focusing optical fibers,” Zh. Tekh. Fiz.,49, No. 12, 2576–2584 (1979).Google Scholar
  15. 15.
    G. Beitman and A. Érdeyi, Higher Transcendental Functions. Elliptical and Automorphic Functions. Lamet and Mathieu Functions [in Russian], Nauka, Moscow (1967),Google Scholar
  16. 16.
    A. V. MacLaughlin, Theory and Applications of Mathieu Functions [Russian translation], Nauka, Moscow (1953).Google Scholar
  17. 17.
    I. Meixner and F. W. Schafke, Mathiensche Funktionen und Spharoidfunktionen, Springer, Berlin (1954).Google Scholar
  18. 18.
    T. D. Kuznetsova and Yu. N. Smirnov, Characteristic Index Tables for the Mathieu Equation [in Russian], VTs Akad. Nauk SSSR, Moscow (1968).Google Scholar
  19. 19.
    Tables for Calculation of Mathieu Functions. Library of Mathematical Tables [in Russian], VTs Akad. Nauk SSSR, Moscow (1968).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • P. M. Kolesnikov
    • 1
  • I. P. Rudenko
    • 1
  1. 1.A. V. Lykov Institute of Heat and Mass TransferAcademy of Sciences of the Belorussian SSRMinsk

Personalised recommendations