Skip to main content
Log in

Thermodynamic analysis of the reasons for the difference between the values of the thermal conductivities of gases as measured by steady-state and transient methods

  • Published:
Journal of engineering physics Aims and scope

Abstract

It is shown that the effective thermal conductivities of a gas measured by steady-state and transient methods are not equal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. J. J. De Groot, J. Kestin, and H. Sookiazian, “Instrument to measure the thermal conductivity of gases,” Physica,75, 454–470 (1975).

    Google Scholar 

  2. A. A. Clifford, J. Kestin, and W. A. Wakeham, “Thermal conductivity of N2, CH4, and CO2 at room temperature and pressure up to 35 MPa,” Physica,97A, No. 3, 287–295 (1979).

    Google Scholar 

  3. J. W. Haarman, Een nauwkeurige methode voor het bepalen van de warmtegeleidings-coëfficiënt van gassen (De niestationaire draadmethode), Delft (1969), p. 250.

  4. I. Mashtovskii, “Thermal conductivity of mixtures of helium and xenon at high temperatures,” Inzh.-Fiz. Zh.,32, No. 4, 635–641 (1977).

    Google Scholar 

  5. D. I. Collins, R. Greif, and A. E. Bryson, “Measurements of the thermal conductivity of helium in the temperature range 1600–6700°K” Int. J. Heat Transfer,8, 1209–1216 (1965).

    Google Scholar 

  6. N. B. Vargaftik and Yu. D. Vasilevskaya, “Thermal conductivity of krypton and xenon at high temperatures up to 5000°K,” Inzh.-Fiz. Zh.,39, No. 5, 852–858 (1980).

    Google Scholar 

  7. N. B. Vargaftik and Yu. D. Vasilevskaya, “High-temperature thermal conductivity of neon up to 5000°K and argon up to 6000°K,” Inzh.-Fiz. Zh.,40, No. 3, 473–481 (1981).

    Google Scholar 

  8. N. B. Vargaftik and Yu. D. Vasilevskaya, “Thermal conductivity of helium at temperatures of 300–6000°K,” Inzh.-Fiz. Zh.,42, No. 3, 412–417 (1982).

    Google Scholar 

  9. S. R. De Groot, Thermodynamics of Irreversible Processes [Russian translation], GITTL, Moscow (1956).

    Google Scholar 

  10. L. D. Landau and E. M. Lifshits, Mechanics of Continuous Media [in Russian], GITTL, Moscow (1953).

    Google Scholar 

  11. D. I. Collins and V. A. Menard, “Measurement of the thermal conductivity of inert gases in the temperature range from 1500 to 5000°K,” Teploperedacha, Ser. C, No. 1, 56–59 (1966).

    Google Scholar 

  12. E. F. Smiley, The Measurement of the Thermal Conductivity of Gases at High Temperatures with Shocktube; Experimental Results in Argon at Temperatures between 1000°K and 3000°K, Ph. D. thesis, The Catholic University of America (1957), Washington, p. 132.

    Google Scholar 

  13. R. A. Matula, “Thermal conductivity of rarefied gases and gas mixtures at high temperatures,” Teploperedacha, Ser. C, No. 3, 40–49 (1968).

    Google Scholar 

  14. R. C. Balescu, Equilibrium and Non-Equilibrium Statistical Mechanics, Wiley (1975).

  15. N. B. Vargaftik, L. P. Filippov, A. A. Tarzimanov, and E. E. Totskii, Thermal Conductivity of Liquids and Gases [in Russian], Standartov, Moscow (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 43, No. 5, pp. 804–807, November, 1982.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abramenko, T.N. Thermodynamic analysis of the reasons for the difference between the values of the thermal conductivities of gases as measured by steady-state and transient methods. Journal of Engineering Physics 43, 1268–1271 (1982). https://doi.org/10.1007/BF00826551

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00826551

Keywords

Navigation