Skip to main content
Log in

Thermodynamic properties of normal propyl alcohol at atmospheric pressure

  • Published:
Journal of engineering physics Aims and scope

Abstract

Data from the literature on density, speed of sound, and isobaric specific heat are analyzed and approximated. Isochoric specific heat and adiabatic and isothermal compression coefficients are calculated for normal propyl alcohol at atmospheric pressure for the temperature range 146.95–370.35°K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. International Critical Tables, Vol. 111, McGraw-Hill, New York (1928).

  2. J. Timmermans, Physicochemical Constants of Pure Organic Compounds, Elsevier, New York (1950), pp. 302–338.

    Google Scholar 

  3. R. C. Wilholt and B. J. Zwolinski, “Physical and thermodynamic properties of aliphatic alcohols,” J. Chem. Phys. Ref. Data, Vol. 2, Supplement No. 1 (1973), pp. 66–77.

    Google Scholar 

  4. S. M. Loktev (ed.), Higher Aliphatic Alcohols [in Russian], Khimiya, Moscow (1970), pp. 279–323.

    Google Scholar 

  5. G. Atonoff, “Densities of liquids and their temperature changes,” Phys. Chem.,48, No. 2, 80–85 (1944).

    Google Scholar 

  6. A. I. Vogel, “Physical properties and chemical constitution of aliphatic alcohols and acids,” J. Chem. Soc., 1814–1819 (1948).

  7. T. Lyon and T. A. Litovitz, “Ultrasonic relaxation in normal propyl alcohol,” J. Appl. Phys.,27, 179–187 (1956).

    Google Scholar 

  8. A. Z. Golik, S. D. Ravikovich, and A. V. Orishchenko, “Viscosity and molecular structure of normal alcohols and their solutions,” Ukr. Khim. Zh.,21, No. 2, 167–175 (1955).

    Google Scholar 

  9. Y. Morino, “On the surface free energy of liquids and liquid mixtures,” Pap. Inst. Phys. Chem. Res., Tokyo,23, No. 476, 49–117 (1950).

    Google Scholar 

  10. S. A. Mumford and J. W. C. Phillips, “Physical properties of some aliphatic compounds,” J. Chem. Soc., 75–84 (1950).

  11. T. D. Ling and M. Van Winkle, “Properties of binary mixtures as a function of composition,” J. Chem. Eng. Data,3, No. 1, 88–95 (1958).

    Google Scholar 

  12. V. G. Komarenko, V. G. Manzhelii, and A. V. Radtsig, “Viscosity and density of normal monatomic alcohols at low temperature,” Ukr. Fiz. Zh.,12, No. 4, 681–685 (1967).

    Google Scholar 

  13. S. Young, “The vapor-pressures, specific volumes, heats of vaporization and critical constants of thirty pure substances,” Proc. R. Dublin Soc.,12, 374–444 (1910).

    Google Scholar 

  14. J. L. Hales and J. H. Eilender, “Liquid densities from 293 to 490°K of nine aliphatic alcohols,” J. Chem. Thermodyn.,8, 1177–1184 (1976).

    Google Scholar 

  15. Kh. I. Amirkhanov, G. V. Stepanov, O. A. Bui, and K. A. Shakhbanov, “Experimental study of the temperature dependence of density of propanol-1 on the gas equilibrium curve,” in: Thermophysical Properties of Liquids and Gases [in Russian], Dagestansk. Fil. Akad. Nauk SSSR, Inst. Fiz., Makhachkala (1979), pp. 3–8.

    Google Scholar 

  16. V. N. Kartsev and V. A. Zabelin, “Isothermal compressibility of liquids of the n-alcohol series,” Zh. Fiz. Khim.,52, No. 8, 2113–2114 (1978).

    Google Scholar 

  17. J. R. Pellam and J. K. Galt, “Ultrasonic propagation in liquids: I. Application of pulse technique to velocity and absorption measurements at 15 megacycles,” J. Chem. Phys.,14, No. 10, 608–614 (1946).

    Google Scholar 

  18. I. G. Mikhailov and A. M. Nizhin, “Speed of sound in some organic liquids and the Rama Rao molecular constant,” Dokl. Akad. Nauk SSSR,58, No. 8, 1689–1692 (1947).

    Google Scholar 

  19. A. Weissler, “Ultrasonic investigation of molecular properties of liquids. II. The alcohols,” J. Am. Chem. Soc.,70, No. 4, 1634–1640 (1948).

    Google Scholar 

  20. A. Eucken and M. Eigen, “Untersuchung der Assoziationsstruktur in schwerem Wasser und n-Propanol mit Hilfe thermischkalorischer Eigenschaften, inbesondere Messungen der spezifischen Warmen,” Z. Elektrochem.,55, No. 5, 343–354 (1951).

    Google Scholar 

  21. N. I. Larionov, “Results of ultrasound speed measurements in some water-alcohol mixtures,” Uch. Zap. Kalininsk. Gos. Pedagog. Inst.,16, 39–71 (1954).

    Google Scholar 

  22. E. H. Carnevale and T. A. Litovitz, “Pressure dependence of sound propagation in the primary alcohols,” J. Acoust. Soc. Am.,27, No. 3, 547–550 (1955).

    Google Scholar 

  23. A. Z. Golik, Yu. I. Shimanskii, and N. M. Kobiichuk, “Compressibility of isoviscous materials,” Ukr. Fiz. Zh.,3, No. 4, 537–541 (1958).

    Google Scholar 

  24. W. Wilsn and D. Bradely, “Speed of sound in four primary alcohols as a function of temperature and pressure,” J. Acoust. Soc. Am.,36, No. 2, 333–337 (1964).

    Google Scholar 

  25. G. W. Marks, “Acoustic velocity with relation to chemical constitution in alcohols,” J. Acoust. Soc. Am.,41, No. 1, 103–117 (1967).

    Google Scholar 

  26. M. P. Hagelberg, “Ultrasonic velocity measurements and B/A for 1-propanol at pressures to 10,000 kg/sec · m2,” J. Acoust. Soc. Am.,47, No. 1, 158–163 (1970).

    Google Scholar 

  27. I. V. Sysoev and N. F. Otpushchennikov, “Speed of sound in n-propanol over a wide temperature range at pressures to 10,000 atm,” in: Ultrasound and the Physicochemical Properties of Materials [in Russian], No. 10, Gos. Pedagog. Inst., Kursk (1976), pp. 77–89.

    Google Scholar 

  28. V. Abaravichyute, B. Kukshas, and R. Savitskas, “Ultraacoustic study of the effects of chlorides on structural properties of aqueous solutions of saturated monatomic alcohols,” Akust. Zh.,24, No. 6, 801–804 (1978).

    Google Scholar 

  29. J. Emery, S. Gasse, R. A. Pethrick, and D. W. Phillips, “Ultrasonic studies of molecular relaxation in pure alcohols,” Advan. Mol. Relax. Inter. Processes,12, No. 1, 47–64 (1978).

    Google Scholar 

  30. S. Gasse and J. Emery, “Relaxations ultrasonores des Les Melanges Aqueux D'isopropanol en de n-propanol,” J. Chim. Phys.,77, No. 4, 263–270 (1980).

    Google Scholar 

  31. A. V. Korabel'nikov and N. F. Otpushchennikov, “Experimental study of temperature dependence of the speed of sound in n-propyl and isopropyl alcohols,” in: Ultrasound and Physicochemical Properties of Materials [in Russian], Gos. Pedagog. Inst., Kursk (1971).

    Google Scholar 

  32. J. F. Counsell, E. B. Lees, and J. F. Martin, “Thermodynamic properties of organic oxygen compounds, Part XIX. Low temperature heat capacity and entropy of propan-1-ol, 2-methylpropan-1-ol and pentan-1-ol,” J. Chem. Soc. (A), No. 8, 1819–1823 (1968).

    Google Scholar 

  33. G. E. Gibson, G. S. Parks, and W. M. Lattimer, “Entropy changes at low temperatures. II. Ethyl and propyl alcohols and their equimolar mixture,” J. Am. Chem. Soc.,42, 1542–1550 (1920).

    Google Scholar 

  34. A. K. Zhdanov, “On the specific heat of some pure liquids and azeotropic mixtures,” Zh. Obshch. Khim., 11, No. 7, 471–482 (1941).

    Google Scholar 

  35. B. A. Grigor'ev, G. S. Yanin, and Yu. L. Rastorguev, “Experimental study of isobaric specific heat of alcohols,” Tr. GIAP, No. 54, 57–64 (1979).

    Google Scholar 

  36. A. A. Aleksandrov, T. S. Khasanshin, and D. S. Kosoi, “Speed of sound, isochoric specific heat, and adiabatic and isothermal compression coefficients of methyl alcohol at atmospheric pressure,” Inzh.-Fiz. Zh.,42, No. 1, 92–98 (1982).

    Google Scholar 

  37. G. C. Benson and H. D. Pflug, “Molar excess volumes of binary systems of normal alcohols at 25°C,” J. Chem. Eng. Data,15, No. 3, 382–386 (1970).

    Google Scholar 

  38. B. M. Grinberg, “Experimental study of isothermal compressibility and certain other parameters of aqueous and alcohol solutions,” Author's Abstract of Candidate's Dissertation, Moscow (1971).

  39. I. V. Sysoev, N. F. Otpushchennikov, and Yu. S. Shoitov, “A method of calculating liquid densities at pressures to 10,000 atm from acoustical measurements,” in: Ultrasound and the Physicochemical Properties of Materials [in Russian], No. 11, Gos. Pedagog. Inst., Kursk (1977), pp. 132–142.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 45, No. 3, pp. 461–467, September, 1983.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khasanshin, T.S. Thermodynamic properties of normal propyl alcohol at atmospheric pressure. Journal of Engineering Physics 45, 1044–1049 (1983). https://doi.org/10.1007/BF00826502

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00826502

Keywords

Navigation