Journal of engineering physics

, Volume 45, Issue 2, pp 898–903 | Cite as

Magnetogasdynamic model of capillary discharge from evaporating wall

  • V. E. Okunev
  • G. S. Romanov
Article
  • 13 Downloads

Abstract

The article describes the mathematical and physical models of heavy-current capillary discharges. The results of numerical calculation of plasma flow in capillaries are presented.

Keywords

Statistical Physic Numerical Calculation Physical Model Plasma Flow Capillary Discharge 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    M. I. Demidov, N. N. Ogurtsova, and I. V. Podmoshenskii, “Pulsed light source with radiation similar to the radiation of a blackbody at 40,000‡K,” Opt.-Mekh. Promyshlennost', No. 1, 1–5 (1960).Google Scholar
  2. 2.
    M. I. Demidov, N. N. Ogurtsova, I. V. Podmoshenskii, and V. M. Shelemina, “Small plasma brightness standard for rapid spectroscopy,” Zh. Prikl. Spektrosk.,23, No. 5, 957–960 (1975).Google Scholar
  3. 3.
    N. N. Ogurtsova, I. V. Podmoshenskii, and V. L. Smirnov, “Observation of phase transition in strongly nonideal plasma,” Pis'ma Zh. Tekh. Fiz.,1, No. 22, 1049–1053 (1975); “The phenomenon of ohmic overheating in dense plasma of capillary discharge,” Teplofiz. Vys. Temp.,14, No. 1, 1–9 (1976); “The phenomenon of phase transition in dense plasma of capillary discharge,” Teplofiz. Vys. Temp.,15, No. 3, 456–464 (1977).Google Scholar
  4. 4.
    S. N. Belov, A. N. Zhilin, N. N. Ogurtsova, and I. V. Podmoshenskii, “Magnetogasdynamic regime of heavy-current capillary discharge,” Teplofiz. Vys. Temp.,16, No. 3, 473–481 (1978).Google Scholar
  5. 5.
    V. B. Voronich, N. N. Ogurtsova, I. V. Podmoshenskii, and P. N. Rogovtsev, “Stabilization of a heavy-current pinching discharge by plasma scavenging,” Zh. Tekh. Fiz.,50, No. 5, 1009–1014 (1980).Google Scholar
  6. 6.
    L. D. Landau and E. M. Lifshits, Electrodynamics of Continuous Media, Pergamon (1960).Google Scholar
  7. 7.
    O. M. Belotserkovskii and Yu. M. Davydov, “The non-steady-state method of ‘large particles’ for gasdynamic calculations,” Zh. Vychisl. Mat. Mat. Fiz.,11, No. 1, 182–207 (1971).Google Scholar
  8. 8.
    G. S. Romanov and V. E. Okunev, Calculation of Radiative and Gasdynamic Processes Occurring in a Capillary Discharge from an Evaporating Wall [in Russian], Minsk (1979), (Report of the A. N. Sevchenko Research Institute of Applied Physical Problems, Gov. Reg. No. B880310).Google Scholar
  9. 9.
    B. Davison, The Theory of Neutron Transport [Russian translation], Atomizdat, Moscow (1960).Google Scholar
  10. 10.
    Ya. B. Zel'dovich and Yu. P. Raizer, Physics of Shock Waves and High Temperature Hydro-dynamic Phenomena, Academic Press.Google Scholar
  11. 11.
    A. A. Samarskii and Yu. P. Popov, Difference Methods of Solving Problems of Gasdynamics [in Russian], Nauka, Moscow (1980).Google Scholar
  12. 12.
    S. I. Kas'kova, G. S. Romanov, K. L. Stepanov, and V. I. Tolkach, “Coefficients of con-tinuous absorption of carbon plasma in the temperature range up to 100 eV,” Opt. Spektrosk.,46, No. 4, 655–662 (1979); G. S. Romanov, K. L. Stepanov, and M. I. Syrkin, “Spectral and mean absorption coefficients of carbon plasma,” Opt. Spektrosk.,47, No. 5, 860–868 (1979).Google Scholar
  13. 13.
    N. N. Kalitkin, L. V. Kuz'mina, and V. S. Rogov, Tables of Thermodynamic Functions and of Transport Coefficients of Plasma [in Russian], (Preprint of IPM AN SSSR), Moscow (1972).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • V. E. Okunev
    • 1
  • G. S. Romanov
    • 1
  1. 1.Research Institute of Applied Physical ProblemsV. I. Lenin Belorussian State UniversityMinsk

Personalised recommendations