Advertisement

Journal of engineering physics

, Volume 46, Issue 4, pp 415–422 | Cite as

Choice of the intermolecular collision frequency for model kinetic equations in the theory of motion of a rarefied gas

  • E. V. Kalinin
  • V. V. Kalinin
  • B. T. Porodnov
  • V. D. Seleznev
Article
  • 38 Downloads

Abstract

The effect of the intermolecular collision frequency on the nonisothermal motion of a rarefied gas is considered.

Keywords

Statistical Physic Kinetic Equation Collision Frequency Model Kinetic Equation Intermolecular Collision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    B. T. Porodnov, “On the effectiveness of molecular and statistical models of the Boltzmann molecular collision operator I. Poiseuille flow,” Manuscript submitted to S. M. Kirov Ukr. Polytech. Inst., Sverdlovsk; Dep. in VINITI, No. 1064-78, 28 March, 1978.Google Scholar
  2. 2.
    B. T. Porodnov, “On the effectiveness of molecular and statistical models of the Boltzmann molecular collision operator II. Thermal creep,” Manuscript submitted to S. M. Kirov Ukr. Polytech. Inst., Sveerdlovsk; Dep in VINITI, No. 1780-78, May 30, 1978.Google Scholar
  3. 3.
    B. T. Porodnov, “On the effectiveness of molecular and statistical models of the Boltzmann molecular collision operator III. Thermomolecular pressure difference,” Manuscript submitted to S. M. Kirov Ukr. Polytech. Inst., Sverdlovsk; Dep in VINITI, No. 2151-78, 27 June, 1978.Google Scholar
  4. 4.
    R. H. Edwards, “Low-density flows through tubes and nozzles,” Proc. of 10th International Symp. in: Rarefied Gas Dynamics, Vol. 1, pp. 199–223, New York (1977).Google Scholar
  5. 5.
    S. G. Skakun, P. E. Suetin, and V. G. Chernyak, “Gas flow and thermomolecular pressure difference in a plane channel,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 4, 179–183 (1974).Google Scholar
  6. 6.
    K. Cherchin'yani, Mathematical Methods in the Kinetic Theory of Gases [in Russian], Mir, Moscow (1973).Google Scholar
  7. 7.
    V. G. Chernyak, V. V. Kalinin, and P. E. Suetin, “Theory of nonisothermal motion of a gas in a plane channel,” Inz.-Fiz. Zh.,36, No. 6, 1059–1065 (1979).Google Scholar
  8. 8.
    V. G. Chernyak, V. V. Kalinin, and P. E. Suetin, “Theory of thermomolecular pressure and mechanocaloric effects in a cylindrical channel,” Inz.-Fiz. Zh.,37, No. 1, 98 (1979).Google Scholar
  9. 9.
    E. M. Shakhov, Methods of Rarefied Gas Dynamics [in Russian], Nauka, Moscow (1974).Google Scholar
  10. 10.
    F. J. McCormack, “Construction of linearized kinetic models for gaseous mixtures and molecular gases,” Phys. Fluids,16, No. 12, 2095–2105 (1973).Google Scholar
  11. 11.
    T. Abe and H. Oguchi, “A hierarchy kinetic model and its application,” Proc. 10th International Symp., in: Rarefied Gas Dynamics, Vol. 2 (1977), pp. 781–793.Google Scholar
  12. 12.
    T. Abe and H. Oguchi, “Higher-kinetic model analysis of cylindrical Couette flows: Proc. 11th International Sump., in: Rarefied Gas Dynamics, Vol. 1 Paris (1979), pp. 177–186.Google Scholar
  13. 13.
    E. P. Gross and E. A. Jackson, “Kinetic models and the linearized Boltzmann equation,” Phys. Fluids,2, No. 4, 432–441 (1959).Google Scholar
  14. 14.
    M. Abramowitz, “Evaluation of the integral\(\mathop \smallint \limits_0^\infty e^{ - \mu ^2 - x/\mu } du\),” J. Math. Phys.,32, No. 2–3, 188–192 (1953).Google Scholar
  15. 15.
    Handbook of Special Functions [in Russian], Nauka, Moscow (1979).Google Scholar
  16. 16.
    S. R. De Groot and P. Mazur, Non-equilibrium Thermodynamics, Elsevier (1964).Google Scholar
  17. 17.
    S. K. Loyalka, “Kinetic theory of thermal transpiration and mechanocaloric effect I,” J. Chem. Phys.,55, No. 9, 4497–4503 (1971).Google Scholar
  18. 18.
    V. V. Kalinin, E. V. Kalinin, and v. G. Chernyak, “Nonisothermal motion of a binary mixture in a plane channel for arbitrary Knudsen numbers,” Sverdlovsk, 1980. Manuscript submitted to A. M. Gor'kii Ukr. State Univ., Dep. in VINITI, May 20, 1980, No. 1962–80.Google Scholar
  19. 19.
    S. G. Mikhlin, Variational Methods in Mathematical Physics [in Russian], Nauka, Moscow (1970).Google Scholar
  20. 20.
    E. M. Shakhov, “On the generalized relaxation kinetic equation of Kruka,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5, 142–145 (1968).Google Scholar
  21. 21.
    M. N. Kogan, Rarefied Gas Dynamics [in Russian], Nauka Moscow (1967).Google Scholar
  22. 22.
    L. H. Holway, “New statistical models for kinetic theory: methods of construction,” Phys, Fluids,9, No. 9, 1658–1673 (1966).Google Scholar
  23. 23.
    S. Chapman and T. Cowling, The Mathematical Theory of Non-Uniform Gases, 2nd Ed., Cambridge Univ. Press, Cambridge (1952).Google Scholar
  24. 24.
    J. O. Hirschfelder, C. Curtiss, and R. Bird, Molecular Theory of Gases and Liquids, Wiley (1964).Google Scholar
  25. 25.
    J. H. Ferziger and H. G. Kaper, Mathematical Theory of Transport Processes in Gases, Elsevier (1972).Google Scholar
  26. 26.
    S. F. Borisov, B. A. Kalinin, B. T. Porodnov, and P. E. Suetin, “Measurement of the viscosity coefficients of gases by the unsteady flow method,” Inz.-Fiz. Zh.,24, No. 1, 67–69 (1973).Google Scholar
  27. 27.
    Thermophysical Properties of Neon, Argon, Krypton, and Xenon [in Russian], Standartov, Moscow (1976).Google Scholar
  28. 28.
    N. B. Vargaftik, L. P. Filippov, A. A. Tarsimanov, and E. E. Totskii, Thermal Conduction in Liquids and Gases [in Russian], Standartov, Moscow (1978).Google Scholar
  29. 29.
    P. E. Suetin and V. G. Chernyak, “Dependence of Poiseuille slip and thermal creep on the form of the molecular interaction for a gs with a bounding surface,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 6, 107–114 (1977).Google Scholar
  30. 30.
    V. V. Kalinin, E. V. Kalinin, and L. A. Krapivina, “On the effect of the interaction of the molecules with a surface on heat and mass transport in channels,” in: Mechanics of Continuous Media. Mechanics of Liquids and Gases, Perm (1980), pp. 40–42.Google Scholar
  31. 31.
    V. G. Chernyak, B. T. Porodnov, P. E. Suetin, et al., “Plane Poiseuille flow for arbitrary accommodation of tangential impulse,” Izv. Vyssh. Uchebn. Zaved., Fiz., No. 6, 107–110 (1973).Google Scholar
  32. 32.
    S. K. Loyalka, N. Petrellis, and T. S. Storvick, “Some numerical results for the BGK model: Thermal creep and viscous slip problems with arbitrary accommodation at the surface,” Phys. Fluids,18, No. 9, 1094–1099 (1975).Google Scholar
  33. 33.
    V. G. Chernyak, A. E. Margilevskii, B. T. Porodnov, and P. E. Suetin, “Effect of interaction of a gas with a surface on thermal creep in a plane channel,” Inzh.-Fiz. Zh.,28, No. 4, 624–629 (1975).Google Scholar
  34. 34.
    M. N. Kogan and N. K. Makashev, “Flow of a gas in a plane channel with longitudinal temperature gradient at arbitrary Knudsen numbers,” TsAGI,1, No. 2, 69–74 (1970).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • E. V. Kalinin
    • 1
  • V. V. Kalinin
    • 1
  • B. T. Porodnov
    • 1
  • V. D. Seleznev
    • 1
  1. 1.Sverdlovsk Engineering InstituteUSSR

Personalised recommendations