Skip to main content
Log in

Numerical analysis of transfer processes in semiconducting devices and structures. 1. General principles of constructing solutions of the fundamental system of equations

  • Published:
Journal of engineering physics Aims and scope

Abstract

The basic situation is considered of constructing effective methods and algorithms of numerical analysis of transfer processes of charge carriers in semiconducting devices and structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. D. Potter, Computational Physics, London (1973).

  2. D. L. Sharfetter and H. K. Gummel, “Large-signal analysis of a silicon Read diode oscillator,” IEEE Trans.,ED-16, No. 1, 64–77 (1969).

    Google Scholar 

  3. W. L. Engl and H. Dirks, “Numerical device simulation guided by physical approaches,” in: Proc. NASE/CODE I Conf., B. T. Browne and J. J. Miller (eds.),12, 65–93, Boole Press, Dublin (1979).

    Google Scholar 

  4. G. I. Marchuk, Calculation Methods for Nuclear Reactors [in Russian], Atomizdat, Moscow (1961).

    Google Scholar 

  5. G. E. Pikus, Basic Theories of Semiconducting Devices [in Russian], Nauka, Moscow (1965).

    Google Scholar 

  6. A. A. Kolosov, Yu. I. Gorbunov, and Yu. E. Naumov, Semiconducting Solid Circuits [in Russian], Sovet-skoe Radio, Moscow (1965).

    Google Scholar 

  7. C. Jacoboni, C. Canali, G. Ottaviani, and A. A. Quaranta, “A review of some charge transport properties of silicon,” Solid State Electron.,20, 77–89 (1977).

    Google Scholar 

  8. Hatchtel, Joy, and Cooley, “New program of one-dimensional analysis for modeling planar semiconducting devices,” in: Automation and Projection [Russian translation], Mir, Moscow (1972).

    Google Scholar 

  9. M. S. Adler and V. A. K. Temple, “Accurate calculations of the forward drop of power rectifiers and thyristors,” Int. Electron Dev. Meet., Washington, D.C., 1976; Tech. Dig., New York (1976), pp. 499–503.

  10. H. K. Gummel, “A self-consistent iterative scheme for one-dimensional steady-state transistor calculations,” IEEE Trans.,ED-11, 455–465 (1964).

    Google Scholar 

  11. T. I. Seidman and S. C. Choo, “Iterative scheme for computer simulation of semiconductor devices,” Solid-State Electron.,15, 1229–1235 (1972).

    Google Scholar 

  12. M. S. Mock, “On the computation of semiconductor device current characteristics by finite difference methods,” J. Eng. Math.,7, 193 (1973).

    Google Scholar 

  13. S. G. Mulyarchik, I. I. Abramov, and V. G. Solov'ev, “Program of one-dimensional analysis of transfer processes in bipolar transistors,” Izv. Vyssh. Uchebn. Zaved., Radioelectron.,23, No. 6, 55–60 (1980).

    Google Scholar 

  14. G. I. Marchuk, Methods of Numerical Mathematics, Springer-Verlag (1975).

  15. O. Manck, H. H. Heimeir, and W. L. Engl, “High injection in a two-dimensional transistor,” IEEE Trans.,ED-21, 403–409 (1974).

    Google Scholar 

  16. J. W. Slotboom, “Computer-aided two-dimensional analysis of bipolar transistors,” IEEE Trans.,ED-20, 669–679 (1973).

    Google Scholar 

  17. M. S. Mock, “A two-dimensional mathematical model of the insulated-gate field-effect transistor,” Solid-State Electron.,16, 601–609 (1973).

    Google Scholar 

  18. M. Reiser, “Computing methods in semiconductor problems,” Lect. Notes Comput. Sci., No. 10, 441–466 (1974).

    Google Scholar 

  19. S. G. Mulyarchik and I. I. Abramov, “Choice of initial approximations in the problem of numerical analysis of bipolar semiconducting devices,” Izv. Uchebn. Vyssh. Zaved., Radioelektron.,24, No. 3, 49–56 (1981).

    Google Scholar 

  20. M. S. Mock, “On the convergence of Gummel's numerical algorithm,” Solid-State Electron.,15, 1–4 (1972).

    Google Scholar 

  21. I. I. Abramov and S. G. Mulyarchik, “Method of vector relaxation of systems in problems of multidimensional numerical analysis of semiconducting devices,” Izv. Vyssh. Uchebn. Zaved., Radioelektron., 24, No. 6, 59–67 (1981).

    Google Scholar 

  22. A. A. Samarskii, Theory of Difference Schemes [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  23. A. A. Samarskii and E. S. Nikolaev, Methods of Solving Grid Equations [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  24. I. I. Abramov, “Algorithms of numerical analysis of bipolar semiconducting devices and their comparison,” in: Proc. Conf.: Problems of Using Contemporary Radiophysical Methods to Enhance the Effectiveness of Production and Automation of Scientific Studies [in Russian], Pt. 2, Minsk (1981).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 44, No. 2, pp. 284–293, February, 1983.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abramov, I.I., Kharitonov, V.A. Numerical analysis of transfer processes in semiconducting devices and structures. 1. General principles of constructing solutions of the fundamental system of equations. Journal of Engineering Physics 44, 199–206 (1983). https://doi.org/10.1007/BF00826149

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00826149

Keywords

Navigation