Advertisement

Journal of engineering physics

, Volume 19, Issue 6, pp 1548–1554 | Cite as

Heat conduction with a temperature-dependent thermal conductivity coefficient

  • Enrico Lorencini
Article
  • 292 Downloads

Abstract

A variational method is employed to solve stationary and nonstationary heat conduction problems when the thermal conductivity coefficient is temperature-dependent and the heat generation function of the medium is arbitrary.

Keywords

Thermal Conductivity Statistical Physic Generation Function Heat Conduction Variational Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    C. F. Bonilla, Nuclear Engineering, McGraw-Hill, New York (1957).Google Scholar
  2. 2.
    H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed., Oxford University Press, Oxford (1959).Google Scholar
  3. 3.
    J. Crank, Mathematics of Diffusion, Oxford University Press, Oxford (1956).Google Scholar
  4. 4.
    J. Pfann, Nucl. Eng. Design,4, 121 (1966).Google Scholar
  5. 5.
    M. A. Biot, J. Aeron. Sci.,24, 857 (1957).Google Scholar
  6. 6.
    M. A. Biot, J. Aerospace Sci.,26, 367 (1959).Google Scholar
  7. 7.
    F. J. Lardner, AIAAJ., 1, 196 (1963).Google Scholar
  8. 8.
    D. F. Hays, Int. J. Heat Transfer,9, 165 (1966).Google Scholar
  9. 9.
    D. F. Hays, Variational Formulation of the Heat Equation: Temperature-Dependent Thermal Conductivity, p, 17, in: Nonequilibrium Thermodynamics, Variational Techniques and Stability, R. J. Donelly, R. Hermann, and I. Prigogine (editors), University of Chicago Press, Chicago (1966).Google Scholar
  10. 10.
    E. L. Dowty, Solution Charts for Transient Heat Conduction in Materials with Variable Thermal Conductivity. An. Meet. Chicago 111, Nov. 1965 of ASME.Google Scholar
  11. 11.
    H. S. Schechter, The Variational Method in Engineering, McGraw-Hill, New York (1967).Google Scholar
  12. 12.
    S. G Mikhlin, Variational Methods in Mathematical Physics, Pergamon Press (1964).Google Scholar
  13. 13.
    F. B. Hildebraud, Methods of Applied Mathematics, 2nd ed. Prentice-Hall Inc. (1965).Google Scholar

Copyright information

© Consultants Bureau 1973

Authors and Affiliations

  • Enrico Lorencini
    • 1
  1. 1.University of BolognaItaly

Personalised recommendations