Journal of engineering physics

, Volume 44, Issue 4, pp 422–431 | Cite as

Analytic method for determining nonequilibrium parameters of an air plasma in a Laval nozzle

  • F. I. Zakharov
  • V. A. Reisig
  • V. V. Pasichnyi
Article
  • 31 Downloads

Abstract

The hierarchy of relaxation times of physicochemical processes occurring in an air plasma is examined. An engineering method for determining the nonequilibrium parameters of the plasma in a Laval nozzle is proposed.

Keywords

Statistical Physic Relaxation Time Engineering Method Physicochemical Process Laval Nozzle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    S. A. Losev, Gas Dynamic Lasers [in Russian], Nauka, Moscow (1977).Google Scholar
  2. 2.
    V. M. Khailov, Chemical Relaxation in Jet Engine Nozzles [in Russian], Mashinostroenie, Moscow (1975).Google Scholar
  3. 3.
    K. N. C. Brey, “Atomic recombination in a hypersonic wind-tunnel nozzle,” Fluid Mech., VII,6, No. 1, 1–32 (1959).Google Scholar
  4. 4.
    K. N. C. Bray, “Chemical reactions in supersonic nozzle flows,” Ninth Symposium (Int.) on Combustion, Academic Press, New York (1963), pp. 770–782.Google Scholar
  5. 5.
    Lordy and Mates, “Nonequilibrium effects accompanying expansion of air with high stagnation enthalpy,” Raket. Tekh. Kosmon.,3, No. 10, 249–251 (1965).Google Scholar
  6. 6.
    E. A. Lezberg, C. M. Rose, and R. Friedman, “Experimental measurements of hydroxyl radical concentration in a hydrogen-air nozzle and comparison with kinetic calculations,” AIAA Paper, 65–579, 22–25 (1965),Google Scholar
  7. 7.
    Kazuhiko Horioka, Koichi Kasuya, Keishiro Niu, and Tishimitsu Murasaki, “Comparisons between numerical and approximate solutions for vibrational nonequilibrium nozzle flows of CO2-N2 mixtures,” Jpn. J. Appl. Phys.,17, No. 7, 1927–1928 (1978).Google Scholar
  8. 8.
    Wild, “Investigation of adiabatic flow including nonequilibrium chemical reactions for fuels containing C, H, O, and N atoms,” Raket. Tekh. Kosmon.,3, No. 10, 72–76 (1965).Google Scholar
  9. 9.
    D. J. Simkin and R. R. Koppang, “Recombination losses in rocket nozzles with storable propellants,” AIAA J.,1, No. 9, 2151–2153 (1963).Google Scholar
  10. 10.
    R. Kushida, “Nonequilibrium chemical recombination effects in exhaust nozzle flow: An approximate method,” AIAA Progress in Astronautics and Rocketry: Liquid Rockets and Propellants, Vol. 2, Academic Press, New York (1960), pp. 385–409.Google Scholar
  11. 11.
    L. C. Fransiscus and E. A. Lezberg, “Effects of exhaust nozzle recombination on hypersonic ramjet performance: II. Analytical investigation,” AIAA J.,1, No. 9, 2077–2083 (1963).Google Scholar
  12. 12.
    V. A. Reisig, S. A. Stadnik, and G. M. Shchegolev, “Investigation of chemical and ionization nonequilibrium state in supersonic flows of combustion products,” Proceedings of All-Union Scientific-Technical Conference on Thermodynamics, Leningrad (1969), pp. 100–103.Google Scholar
  13. 13.
    F. I. Zakharov and V. A. Reisig, “Calculation of parameters of an air plasma with adiabatic expansion in a micronozzle lattice,” in: Direct Energy Conversion [in Russian], Naukova Dumka, Kiev (1980), pp. 72–78.Google Scholar
  14. 14.
    F. I. Zakharov and V. A. Reisig, “Relaxation time of physicochemical processes in an air plasma,” in: Conversion of MHD Energy by a Thermoelectric Method [in Russian], Naukova Dumka, Kiev (1981), pp. 110–120.Google Scholar
  15. 15.
    A. O. Eschenroeder, “Entropy changes in nonequilibrium flows,” Phys. Fluids, X,6, No. 10, 1408–1419 (1963).Google Scholar
  16. 16.
    Yu. D. Irov, É. V. Keil', B. N. Maslov, et al., Gas Dynamic Functions [in Russian], Mashinostroenie, Moscow (1965).Google Scholar
  17. 17.
    V. P. Agafonov, V. K. Vertushkin, A. A. Gladkov, and O. Yu. Polyanskii, Nonequilibrium Physieochemical Processes in Aerodynamics [in Russian], Mashinostroenie, Moscow (1972).Google Scholar
  18. 18.
    A. P. Zuev, B. K, Tkachenko, and V. P. Vakatov, “Experimental determination of nonequilibrium effects accompanying thermal decomposition of N2O,” Proceedings of the Sixth All-Union Symposium on Combustion and Explosion (Alma-Ata). Chemical Physics of Combustion and Explosion Processes. Kinetics of Chemical Reactions, Chemogolovka (1980), pp. 10–13.Google Scholar
  19. 19.
    E. A. Andreev and E. A. Nikitin, “Transfer of vibrational and electronic energy in atomic-molecular collisions,” in: Chemistry of Plasma [in Russian], B. M. Smirnov (ed.), No. 3, Atomizdat, Moscow (1976), pp. 28–94.Google Scholar
  20. 20.
    J. Martin, Entrance into the Atmosphere. Introduction to Theory and Practice [Russian translation], Mir, Moscow (1969).Google Scholar
  21. 21.
    Ya. B. Zel'dovich and Yu. P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena, Academic Press.Google Scholar
  22. 22.
    E. V. Stupachenko, S. A. Losev, and A. I. Osipov, Relaxation Processes in Shock Waves [in Russian], Nauka, Moscow (1965).Google Scholar
  23. 23.
    White and Millikan, “Vibrational relaxation in air,” Raket. Tekh. Kosmon.,2, No. 10, 213–215 (1964).Google Scholar
  24. 24.
    R. L. Taylor, M. Camac, and R. M. Feinberg, “Measurements of vibration-vibration coupling in gas mixtures,” Eleventh Symposium (Int.) on Combusion, Academic Press, New York (1967), pp. 49–66.Google Scholar
  25. 25.
    B. F. Gordiets, A. I. Osipov, and L. A. Shelepin, Kinetic Processes in Gases and Molecular Lasers [in Russian], Nauka, Moscow (1980).Google Scholar
  26. 26.
    V. A. Reisig and V. P. Kubaichuk, “Calculation of parameters of low temperature plasma including relaxation time of bi- and trimolecular chemical processes,” in: Thermophysical Problems of Direct Energy Conversion [in Russian], Naukova Dumka, Kiev (1979), pp. 44–47.Google Scholar
  27. 27.
    Tsyan' Syué-cen', Physical Mechanics [Russian translation], Mir, Moscow (1965).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • F. I. Zakharov
    • 1
    • 2
  • V. A. Reisig
    • 1
    • 2
  • V. V. Pasichnyi
    • 1
    • 2
  1. 1.Institute of Technical ThermophysicsUSSR
  2. 2.Institute of Problems in Materials ScienceAcademy of Sciences of the Ukrainian SSRKiev

Personalised recommendations