Journal of engineering physics

, Volume 41, Issue 6, pp 1277–1281 | Cite as

Modified semiempirical model of turbulence

  • V. M. Kapinos
  • A. F. Slitenko
  • A. I. Tarasov


A modified model of the mixing length is constructed. The model adequately accounts for changes in external flow conditions and the history of the flow.


Statistical Physic Flow Condition External Flow Semiempirical Model External Flow Condition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    Proceedings, 1968 AFOSR-IFP Stanford Conference on Computation of Turbulent Boundary Layers, Stanford Univ., California, Vol. 2 (1969).Google Scholar
  2. 2.
    R. A. McD. Galbraight and M. R. Head, “Eddy viscosity and mixing length from measurement boundary-layer developments,” Aeronaut. Q.,26, 133–154 (1975).Google Scholar
  3. 3.
    A. S. Ginevskii et al., “Methods of calculating turbulent boundary layers,” in: Results of Science and Technology. Mechanics of Liquids and Gases [in Russian], Vol. 2, Moscow (1978), pp. 155–304.Google Scholar
  4. 4.
    H. McDonald and R. W. Fish, “Practical calculation of transitional boundary layers,” Int. J. Heat Mass Transfer,16, No. 9, 1729–1744 (1973).Google Scholar
  5. 5.
    T. Sebesi and A. M. Smith, “Finite-difference method of calculating compressible laminar and turbulent boundary layers,” in: Theoretical Foundations of Engineering Calculations [Russian translation], Vol. 3, Mir (1970), pp. 121–133.Google Scholar
  6. 6.
    R. A. McD. Glbraight, S. Sjolander, and M. R. Head, “Mixing length in the wall region of turbulent boundary layers,” Aeronaut. Q.,28, Pt. 2, 97–110 (1977).Google Scholar
  7. 7.
    W. I. Glowacki, “An improved mixing length formulation for turbulent boundary layers with freestream pressure gradients,” AIAA Pap., No. 202 (1978).Google Scholar
  8. 8.
    P. N. Romanenko and V. G. Kalmykov, “Experimental study of an incompressible isothermal turbulent boundary layer with a positive pressure gradient,” Trudy MLTI (Moscow Forestry Engineering Institute),32 (1970).Google Scholar
  9. 9.
    Y. Tsuij and Y. Morikawa, “Turbulent boundary layers with pressure gradient alternating in sign,” Aeronaut. Q.,27, Pt, 1, 15–28 (1976).Google Scholar
  10. 10.
    V. M. Kapinos, A. F. Slitenko, and A. I. Tarasov, “Determination of mixing lengths and turbulent, viscosity from measured velocity profiles,” in: Power Machinery Construction [in Russian], Vol. 26 (1978), pp. 52–57.Google Scholar
  11. 11.
    B. G. J. Thompson, “A new two-parameter family of mean velocity smooth walls,” ARC RM, No. 3463 (1965).Google Scholar
  12. 12.
    F. H. Clauser, “Turbulent boundary layers in adverse pressure gradients,” J. Aeronaut. Sci.,21, 91–108 (1954).Google Scholar
  13. 13.
    D. K. Faddeev and V. N. Faddeeva, Computational Methods of Linear Algebra, W. H. Freeman, (1963).Google Scholar
  14. 14.
    H. Schlichting, Boundary Layer Theory, McGraw-Hill (1968).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • V. M. Kapinos
  • A. F. Slitenko
  • A. I. Tarasov

There are no affiliations available

Personalised recommendations