Advertisement

Journal of engineering physics

, Volume 40, Issue 1, pp 91–97 | Cite as

Statistical theory of structural and thermodynamic properties of molecular crystals

  • É. T. Bruk-Levinson
  • V. V. Belov
Article
  • 22 Downloads

Abstract

A crystal theory is constructed on the basis of the statistical method of conditional distributions. A closure procedure is suggested, making it possible to take into account the correlation of various orders, and several structural and thermodynamic quantities are calculated.

Keywords

Statistical Physic Statistical Method Thermodynamic Property Statistical Theory Conditional Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Clarendon Press, Oxford (1954).Google Scholar
  2. 2.
    Ya. P. Terletskii and V. I. Zubov, “Quasiequilibrium theory of a crystal,” Vestn. Mosk. Gos. Univ., Ser. Fiz. Astron., No. 5, 53 (1968).Google Scholar
  3. 3.
    I. P. Bazarov, Statistical Theory of the Crystalline State [in Russian], Moscow State Univ. (1971).Google Scholar
  4. 4.
    I. I. Ol'khovskii, “Stationary distribution functions of a Van der Waals crystal,” Dokl. Akad. Nauk SSSR,208, 808 (1973); “First approximation of the temperature expansion of a Bogolyubov chain,” Dokl. Akad. Nauk SSSR,221, 1063 (1975).Google Scholar
  5. 5.
    M. R. Korotkina, “Method of calculating thermodynamic properties of a crystal,” Dokl. Akad. Nauk SSSR,220, 795 (1975).Google Scholar
  6. 6.
    S. A. Shchekatolina and L. N. Yakub, “Thermodynamics of anharmonic crystals,” Fiz. Tverd. Tela (Leningrad),18, 3137 (1976).Google Scholar
  7. 7.
    É. T. Bruk-Levinson, “Interparticle correlations in a crystal,” Dokl. Akad. Nauk BSSR,21, 511 (1977).Google Scholar
  8. 8.
    L. A. Rott, Statistical Theory of Molecular Systems [in Russian], Nauka, Moscow (1979).Google Scholar
  9. 9.
    G. S. Bokun, V. S. Vikhrenko, I. I. Narkevich, and L. A. Rott, “Statistical theory of crystal-liquid, liquid-gas, and crystal-gas phase transitions,” Dokl. Akad. Nauk SSSR,212, 1328 (1973).Google Scholar
  10. 10.
    V. V. Belov and É. T. Bruk-Levinson, “Statistical description of many-component condensed systems,” Izv. Akad. Nauk BSSR, Ser. Fiz. Mat. Nauk, No. 2, 68 (1979).Google Scholar
  11. 11.
    V. V. Belov, “Statistical theory of condensed systems with short-range and Coulomb potentials,” Thesis, Minsk (1979).Google Scholar
  12. 12.
    M. V. Fedoryuk, The Steepest Descent Method [in Russian], Nauka, Moscow (1977).Google Scholar
  13. 13.
    G. Leibfried, Microscopic Theory of Mechanical and Thermal Properties of Crystals, [Russian translation], Fizmatgiz, Moscow (1963).Google Scholar
  14. 14.
    V. V. Belov and É. T. Bruk-Levinson, “Statistical theory of an equilibrium liquid,” in: Physics of the Liquid State [in Russian], No. 5, Kiev (1977), p. 42.Google Scholar
  15. 15.
    J. W. Stewart, J. Phys. Chem. Solids,1, 146 (1956).Google Scholar
  16. 16.
    J. W. Stewart, J. Phys. Chem. Solids,29, 641 (1968).Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • É. T. Bruk-Levinson
    • 1
    • 2
  • V. V. Belov
    • 1
    • 2
  1. 1.A. V. Lykov Institute of Heat and Mass TransferAcademy of Sciences of the Belorussian SSRUSSR
  2. 2.S. M. Kirov Belorussian Technological InstituteMinsk

Personalised recommendations