Journal of engineering physics

, Volume 40, Issue 1, pp 44–49 | Cite as

Droplet breakup regimes and criteria for their existence

  • A. A. Borisov
  • B. E. Gel'fand
  • M. S. Natanzon
  • O. M. Kossov


An analysis of experimental and theoretical studies of droplet breakup by a gas flow in shock tubes and nozzles is presented. A system of criteria defining droplet breakup regimes is developed.


Statistical Physic Shock Tube Droplet Breakup Breakup Regime 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. Y. Falk, “Coaxial spray atomization in accelerating gas stream,” NASA CR-134825 (1975).Google Scholar
  2. 2.
    L. J. Zajac, “Droplet breakup in accelerating gas flows,” NASA CR-134478 (1973).Google Scholar
  3. 3.
    L. J. Zajac, “Droplet breakup in gas flows,” NASA CR-134479 (1973).Google Scholar
  4. 4.
    E. Rabin, A. R. Schallenmuller, and R. B. Lowhead, “Displacement and scattering of propellant droplets,” AFOSR TR-60-75 (1960).Google Scholar
  5. 5.
    R. A. Dickerson and T. A. Coultas, “Breakup of droplets in an accelerating gas flow,” AIAA Paper, No. 611 (1966).Google Scholar
  6. 6.
    M. S. Volynskii, “Droplet breakup in a gas flow,” Dokl. Akad. Nauk SSSR,68, No. 2, 237–240 (1949).Google Scholar
  7. 7.
    A. R. Hanson, E. G. Domich, and H. S. Adams, “Shock tube investigations of the breakup of drops by air blasts,” Phys. Fluids,6, No. 8, 1071–1080 (1963).Google Scholar
  8. 8.
    F. S. Haas, “Stability of droplets suddenly exposed to a high velocity gas stream,” AIChE J.,10, No. 6, 920–924 (1964).Google Scholar
  9. 9.
    R. E. Luna and W. A, Klikov, “On aerodynamic breakup of fluid drops,” SC-RR-66 (1966).Google Scholar
  10. 10.
    J. O. Hinze, “Critical speeds and sizes of liquid globules,” J. Appl. Phys.1, 273–288 (1949).Google Scholar
  11. 11.
    W. R. Lane, “Scatter of drops in stream of air,” Ind. Eng. Chem.,43, No. 4, 1312–1317 (1951).Google Scholar
  12. 12.
    G. Hassler, “Untersuchung zur Zerstörung von Wassertropfen durch aerodynamische Krafte,” Forsch. Ing. Wes.,38, No. 6, 183–192 (1972).Google Scholar
  13. 13.
    G. Morrel, “Critical conditions for drop and jet scattering,” NASA TND-677 (1961).Google Scholar
  14. 14.
    B. E. Gel'fand, S. A. Gubin, B. I. Palamarchuk, and S. M. Kogarko, “Peculiarities in liquid droplet destruction at high gas pressure,” Zh. Prikl. Mekh. Tekh. Fiz., No. 4, 61–66 (1975).Google Scholar
  15. 15.
    A. A. Borisov, B. E. Gel'fand, S. A. Gubin, et al., “Amplification of weak shock waves in a hot two-phase liquid-gas system,” Zh. Prikl; Mekh. Tekh. Fiz., No. 1, 168–173 (1970).Google Scholar
  16. 16.
    B. E. Gel'fand, S. A. Gubin, and S. M. Kogarko, “Varieties of droplet breakup in shock waves and their characteristics,” Inzh.-Fiz. Zh.,27, No. 1, 120–126 (1974).Google Scholar
  17. 17.
    G. D. Waldman and W. G. Reinecke, “Experiments on water drop breakup behind Mach 3 to 12 shocks,” Avco Corp. AVATD 0172-69-RR (1969).Google Scholar
  18. 18.
    G. D. Waldman and W. G. Reinecke, “Shock layer scattering of cloud drops in reentry flight,” AIAA-paper, No. 152 (1975).Google Scholar
  19. 19.
    O. C. Engel, “Studies of droplet breakup,” NBS Res. J.,60, No. 3, 245–280 (1958).Google Scholar
  20. 20.
    F. A. Williams, “Atomization processes and ignition criteria for supersonic combustion,” Astron. Acta,15, No. 5–6, 547–557 (1970).Google Scholar
  21. 21.
    Yu. A. Korsunov and A. P. Tishin, “Experimental study of droplet breakup at low Reynolds numbers,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 2, 182–186 (1971).Google Scholar
  22. 22.
    V. P. Loparev, “Experimental study of liquid droplet breakup under conditions of constant increase in external forces,” Izv. Akad. Nauk SSSR, Mekh. Zhidk, Gaza, No. 3, 174–178 (1975).Google Scholar
  23. 23.
    E. Y. Harper, I. D. Chang, and G. W. Grube, “A unified theory of raindrop breakup,” Proc. 8th Shock Tube Symposium (1971), pp. 63/1–63/13.Google Scholar
  24. 24.
    P. G. Simplins, “On the distortion and breakup of suddenly accelerated droplets,” AIAA-paper, No. 325 (1971).Google Scholar
  25. 25.
    P. G. Simpkins and E. L. Bales, “Water drop response to sudden acceleration,” J. Fluid Mech.,55, Pt. 4, 629–639 (1972).Google Scholar
  26. 26.
    W. Körner, “Das Verhalten von Flussigkeittropfen in Gasstrahlen höher Geschwindigkeiten,” Acta Mech.,13, No. 200, 87–115 (1972).Google Scholar
  27. 27.
    H. Lamb, Hydrodynamics, Dover, New York (1932).Google Scholar
  28. 28.
    V. G. Levich, Physicochemical Hydrodynamics, Prentice-Hall (1962).Google Scholar
  29. 29.
    M. S. Volynskii and A. S. Lipatov, “Deformation and breakup of droplets in a gas flow,” Inzh.-Fiz. Zh.,25, No. 5, 838–843 (1970).Google Scholar
  30. 30.
    A. A. Ranger, “Shock wave propagation through a two-phase medium,” Astron. Acta,17, No. 4–5, 675–683 (1972).Google Scholar
  31. 31.
    F. Jaarsma and W. Derksen, “Shock tube techniques for fuel droplet combustion studies,” NRL Rep. MP-252 (1967).Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • A. A. Borisov
    • 1
  • B. E. Gel'fand
    • 1
  • M. S. Natanzon
    • 1
  • O. M. Kossov
    • 1
  1. 1.Institute of Chemical PhysicsAcademy of Sciences of the USSRMoscow

Personalised recommendations