Skip to main content
Log in

Thermodiffusion of32S and34S in sulfur hexafluoride

  • Published:
Journal of engineering physics Aims and scope

Abstract

The article describes the experimental investigation of the separation of sulfur isotopes in a thermodiffusion column.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

T*=kT/ɛ:

reduced temperature

¯T=(T2 + T1)/2; T2, T1 :

temperatures of the hot and cold surfaces, respectively

ΔT=T1 − T1 Kc, Kd, H:

coefficients of the transport equation, see (3), (7)

δ:

size of the gap

P:

pressure

L:

height of the column

B:

perimeter of the gap

R:

gas constant

D, ν:

diffusion coefficient and coefficient of dynamic viscosity

ρ:

density

q:

degree of separation, see (5)

α:

thermodiffusion constant

M1, M2 :

masses of the isotopic molecules

Kp :

parameter taking parasitic convection into account

ϕ:

potential function

Literature cited

  1. H. Wullkopf, “Die Bestimmung der für das Trennzohrverfahren charakteristischen Konstanten des SO2,” Z. Phys.,146, No. 3, 388–392 (1956).

    Google Scholar 

  2. J. O. Hirschfelder, Ch. Curtis, and R. Bird, Molecular Theory of Gases and Liquids, Wiley (1974).

  3. A. A. Opalovskii and E. U. Lobkov, “Sulfur hexafluoride,” Usp. Khim.,44, No. 2, 193–213 (1975).

    Google Scholar 

  4. J. Kestin, H.-E. Khafifa, S. T. Ro, and W. A. Wakeham, “The viscosity and diffusion coefficients of eighteen binary gaseous systems,” Physica,88A, 242–260 (1977).

    Google Scholar 

  5. Physical Encyclopedic Dictionary [in Russian], Vol. 5, Sovetskaya Éntsiklopediya, Moscow (1966).

  6. A. De Troyer, Itterbeck, and A. O. Rietfeld, “Thermal diffusion in H2-D2 and H2-He mixtures at low temperatures,” Physica,17, No. 11–12, 938–942 (1951).

    Google Scholar 

  7. R. Paul and W. W. Watson, “Thermal diffusion and self-diffusion in ammonia,” J. Chem. Phys.,45, No. 7, 2675–2677 (1966).

    Google Scholar 

  8. B. P. Mathur and W. W. Watson, “Isotopic thermal diffusion factor for CO2,” J. Chem. Phys.,51, No. 12, 5623–5625 (1969).

    Google Scholar 

  9. B. P. Mathur and W. W. Watson, “Thermal diffusion in isotopic16O2–18O2,” J. Chem. Phys.,51., No. 5, 2210–2214 (1969).

    Google Scholar 

  10. B. P. Mathur and W. W. Watson, “Thermal diffusion factor for isotopic CO,” J. Chem. Phys.,52, 1007–1008 (1970).

    Google Scholar 

  11. G. Vasaru, G. Muller, Reinhold, et al., in: The Thermal Diffusion Column, Deutscher Verlag der Wissenschaften, Berlin (1969), p. 210.

    Google Scholar 

  12. M. Klein, H. J. M. Hanley, F. J. Smith, and P. Holland, in: Tables of Collision Integrals and Second Virial Coefficients for the (m, 6.8) Intermolecular Potential Function, U.S. Department of Commerce, National Bureau of Standards (1974), pp. 1–151.

  13. R. B. Bird, V. Stewart, and E. Lightfoot, Transport Phenomena, Wiley (1960).

  14. W. H. Mears, E. Rosenthal, and J. V. Sinka, “Physical properties and virial coefficients of sulfur hexafluoride,” J. Phys. Chem.,73, No. 7, 2254–2261 (1969).

    Google Scholar 

  15. S. D. Hamann and J. A. Lambert, “The behavior of fluids of quasispherical molecules,” Austr. J. Chem.,7, No. 1, 1–27 (1954).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 42, No. 1, pp. 65–71, January, 1982.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azroyan, K.K., Rabinovich, G.D. Thermodiffusion of32S and34S in sulfur hexafluoride. Journal of Engineering Physics 42, 52–57 (1982). https://doi.org/10.1007/BF00824991

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00824991

Keywords

Navigation