Skip to main content
Log in

Universal simulation of degenerating homogeneous turbulence

  • Published:
Journal of engineering physics Aims and scope

Abstract

The problem of universal simulation of the dynamics of a turbulent velocity field (universal in the sense of arbitrary values of the Reynolds turbulence number) is treated on the basis of the moment model in the second approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

¯q2 ≡ ū 2i :

double the kinetic turbulence energy

λ 2u =5v¯q2u :

Taylor turbulence scale squared

ɛu=v<∂u1/∂xk)2>:

kinetic-energy dissipation function

NRe,λ=√¯q2λu /ν:

Reynolds turbulence number

Literature cited

  1. R. Dreissler, “On the decay of homogeneous turbulence before the final period,” Phys. Fluids,1, No. 2, 111–121 (1958).

    Google Scholar 

  2. V. E. Aerov, A. A. Bulavko, Yu. M. Dmitrenko, and B. A. Kolovandin, “Statistical coefficients of momentum and heat transfer in homogeneous turbulence,” in: Heat and Mass Transfer [in Russian], Vol. 1, Minsk (1972), pp. 35–44.

    Google Scholar 

  3. V. E. Aerov, A. A. Bulavko, Yu. M. Dmitrenko, and B. A. Kolovandin, “Statistical coefficients of velocity and temperature fields in homogeneous nonisotropic turbulence,” in: Turbulent Flow [in Russian], Nauka, Moscow (1974), pp, 154–157.

    Google Scholar 

  4. B. A. Kolovandin, A. A. Bulavko, Yu. M. Dmitrenko, and N. N. Luchko, “Simplest statistical characteristics of velocity field in turbulent stream,” in: Turbulent Boundary-Layer Flow [in Russian], Part 1, Novosibirsk (1975), pp. 152–164.

  5. B. A. Kolovandin, A. A. Bulavko, and Yu. M. Dmitrenko, “Statistical coefficients of transfer in homogeneous velocity and temperature fields,” Int. J. Heat Mass Transfer, 19, 1405–1413 (1976).

    Google Scholar 

  6. N. M. Galin, “Calculation of turbulent-energy dissipation in streams of incompressible fluids,” Teplofiz. Vys. Temp.,14, No. 1, 124–131 (1976).

    Google Scholar 

  7. K. Hanjalic and B. E. Launder, “Contribution toward a Reynolds-stress closure for turbulence with low Reynolds number,” J. Fluid Mech.,74, 738–743 (1976).

    Google Scholar 

  8. W. C. Reynolds, “Computation of turbulent flows,” Ann. Rev. Fluid Mech.,8, 183–208 (1976).

    Google Scholar 

  9. M. K. Chung and R. J. Adrian, “Evaluation of variable coefficients in second-order turbulence models,” Proc. Eleventh Conf. on Turbulent Shear Flows, London (1979), pp. 1043–1048.

  10. J. L. Lumley and G. R. Newman, “Return of isotropy of homogeneous turbulence,” J. Fluid Mech.,82, 161–178 (1977).

    Google Scholar 

  11. L. G. Loitsyanskii, “Some fundamental laws of isotropic turbulent flow,” Trans. Central Inst. Aerohydrodynamics [in Russian], No. 440, Moscow (1939).

  12. P. G. Saffman, “Large-scale structure of homogeneous turbulence,” J. Fluid Mech.,27, 581–593 (1967).

    Google Scholar 

  13. G. Compte-Bellot and S. Corrsin, “Use of a contraction to improve the isotropy of gridgenerated turbulenee,” J. Fluid Mech.,25, 657–682 (1966).

    Google Scholar 

  14. M. Gad-El-Hak and S. Corrsin, “Measurements of the nearly isotropic turbulence behind a uniform jet grid,” J. Fluid Mech.,52, 115–143 (1974).

    Google Scholar 

  15. G. K. Batchelor and A. A. Townsend, “Decay of isotropic turbulence in the final period,” Proc. R. Soc.,A194, 527–543 (1948).

    Google Scholar 

  16. S. A. Orszag and G. S. Patterson, “Numerical simulation of three-dimensional homogeneous and isotropic turbulence,” Phys. Rev. Lett.,28, 76–79 (1972).

    Google Scholar 

  17. A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics, Vol. 2, MIT Press (1975).

  18. D. C. Leslie, Developments in the Theory of Turbulence, Clarendon Press, Oxford (1973).

    Google Scholar 

  19. G. R. Newman and J. R. Herring, “A test-field model study of a passive scalar in isotropic turbulence,” J. Fluid Mech.,94, 163–194 (1979).

    Google Scholar 

  20. G. S. Glushko and V. D. Traskovskii, “A method of calculating the spectral energy density of homogeneous and isotropic turbulence,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 1, 13–19 (1978).

    Google Scholar 

Download references

Authors

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 42, No. 1, pp. 46–52, January, 1982.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolovandin, B.A., Luchko, N.N., Sidorovich, T.V. et al. Universal simulation of degenerating homogeneous turbulence. Journal of Engineering Physics 42, 36–40 (1982). https://doi.org/10.1007/BF00824988

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00824988

Keywords

Navigation