Journal of engineering physics

, Volume 38, Issue 6, pp 671–676 | Cite as

On the calculation of the barodiffusion constants of binary gas mixtures (McCormack model)

  • V. G. Leitsina
  • N. V. Pavlyukevich
  • G. I. Rudin
Article

Abstract

An expression for the barodiffusion constant is obtained on the basis of the McCormack model equations in the approximation of a continuous medium.

Keywords

Statistical Physic Model Equation Continuous Medium McCormack Model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    J. P. Breton, “The diffusion equation in discontinuous systems,” Physica,50, 365–379 (1970).Google Scholar
  2. 2.
    S. K. Loyalka, “Velocity slip coefficient and the diffusion slip velocity for a multicomponent gas mixture,” Phys. Fluids14, No. 12, 2599–2604 (1971).Google Scholar
  3. 3.
    L. H. Shendalman, “Low-speed transport of gas mixtures in long cylindrical tubes according to the BGK model,” J. Chem. Phys.,51, No. 6, 2483–2489 (1969).Google Scholar
  4. 4.
    H. Lang and K. Eger, “über die gas diffusion in engen Kapillaren,” Z. Phys. Chem. N. F.,68, 130–148 (1969).Google Scholar
  5. 5.
    N. D. Pochuev, V. D. Seleznev, and P. E. Suetin, “Flow of a binary gas mixture with arbitrary accomodation of tangential momentum,” Zh. Prikl. Mekh. Tekh. Fiz., No. 5, 37–41 (1974).Google Scholar
  6. 6.
    H. Lang and S. K. Loyalka, “Diffusion slip velocity: theory and experiment,” Z. Naturforsch., Teil A,27, 1307–1319 (1972).Google Scholar
  7. 7.
    F. J. McCormack, “Construction of linearized kinetic models for gaseous mixtures and molecular gases,” Phys. Fluids,16, No. 12, 2095–2105 (1973).Google Scholar
  8. 8.
    V. M. Zhdanov and R. V. Smirnova, “Diffusion slip and barodiffusion of a gas mixture in plane and cylindrical channels,” Zh. Prikl. Mekh. Tekh. Fiz., No. 5, 103–115 (1978).Google Scholar
  9. 9.
    Y. Sone and K. Yamamoto, “Flow of rarefied gas through a circular pipe,” Phys. Fluids,11, No. 8, 1672–1678 (1968).Google Scholar
  10. 10.
    V. G. Leitsina, N. V. Pavlyukevich, and G. I. Rudin, “Kinetics of mass transfer in a capillary with evaporation from the internal surface,” Int. J. Heat. Mass Transfer,21, 399–406 (1978).Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • V. G. Leitsina
    • 1
  • N. V. Pavlyukevich
    • 1
  • G. I. Rudin
    • 1
  1. 1.A. V. Lykov Institute of Heat and Mass TransferAcademy of Sciences of the Belorussian SSRMinsk

Personalised recommendations