Journal of engineering physics

, Volume 41, Issue 5, pp 1201–1208 | Cite as

Use of finite elements in calculations of the flow of non-Newtonian media

  • H. Aberspach


The finite-element method (FEM) is applied to the solution of rheodynamic problems. As an example, the flow of non-Newtonian fluids in a channel is examined.


Statistical Physic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    J. T. Oden, O. C. Zienkiewicz, R. H. Gallagher, and C. Taylor, Finite Element Methods in Flow Problems, UAH Press, Huntsville (1974).Google Scholar
  2. 2.
    R. H. Gallagher, J. T. Oden, C. Taylor, and O. C. Zienkiewicz, Finite Elements in Fluids, Vols. 1 and 2, Wiley, London (1975).Google Scholar
  3. 3.
    S. M. Ligure, “Finite-element methods in flow problems,” Preprints of the Second International Symp., Rapallo (1976).Google Scholar
  4. 4.
    D. K. Gartling, ASME Symposium on Computing in Applied Mathematics, New York (1976).Google Scholar
  5. 5.
    B. A. Finlayson, The Method of Weighted Residuals and Variational Principles, Academic Press, New York (1972).Google Scholar
  6. 6.
    B. A. Finlayson and L. E. Seriven, “The method of weighted residuals, a review,” Appl. Mech. Rev.,19, 735–748 (1966).Google Scholar
  7. 7.
    R. B. Bird, “New variational principle for incompressible non-Newtonian flow,” Phys. Fluids,3, 539–561 (1960).Google Scholar
  8. 8.
    O. C. Zienkiewicz and Y. K. Cheng, “Finite elements in the solution of field problems,” Engineers,222, 507–510 (1965).Google Scholar
  9. 9.
    R. T. Cheng, “Numerical solution of the Navier-Stokes equations by the finite-element method,” Phys. Fluids,15, 2098–2105 (1972).Google Scholar
  10. 10.
    M. D. Olson, “A variational finite-element method for two-dimensional steady viscous flows,” Proc. McGill-E∘.I.C. Conf. on Finite Element Methods in Civil Eng., Montreal (1972).Google Scholar
  11. 11.
    I. T. Oden, “Finite-element analogue of the Navier-Stokes equations,” J. Eng. Mech. Div. Proc. A.S.C.E.,96, 529–543 (1970).Google Scholar
  12. 12.
    K. Palit and R. T. Fenner, “Finite-element analysis of slow non-Newtonian channel flow,” A. I. Ch. E. J.,18, 628–633 (1972).Google Scholar
  13. 13.
    K. Palit and R. T. Fenner, “Finite-element analysis of two-dimensional slow non-Newtonian flows,” A.I.Ch.E.J.,18, 1163–1170 (1972).Google Scholar
  14. 14.
    R. I. Tanner, “Some experiences using finite-element methods in polymer processing and rheology,” Proc. Seventh. Int. Congr. Rheology, Gutteburg, 140–145 (1976).Google Scholar
  15. 15.
    M. Kawahara and N. Takenchi, “Mixed finite-element method for analysis of viscoelastic fluid flow,” Comput. Fluids,5, 33–45 (1977).Google Scholar
  16. 16.
    H. Aberspach, Beitrag zum Flieβen hochviskoser Medien in Durchstromteilen mit Zentralkorper, Dissertationsschrift, Karl-Marx-Stadt (1977).Google Scholar
  17. 17.
    O. C. Zienkiewicz, Methode der finiten Elemente [in German], Fachbuchverlag, Leipzig (1975).Google Scholar
  18. 18.
    K. H. Huebner, The Finite Element Method for Engineers, Wiley, New York (1975).Google Scholar
  19. 19.
    D. Marsal, Die numerische Losung partieller Differentialgeichugen in Wissenschaft und Technik, Wissenschaftsverlag, Mannheim (1976).Google Scholar
  20. 20.
    H. Aberspach, Programmbeschreibung STROEl, Berlin (1977) (unveroffentlicht).Google Scholar
  21. 21.
    P. Hood, “Frontal solution program for unsymmetric matrices,” Int. J. Numer. Math. Eng.,10, 379–401 (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • H. Aberspach

There are no affiliations available

Personalised recommendations